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MAINTAINING QUALITY OF SERVICE IN
SHARED FORWARDING ELEMENTS
MANAGED BY A NETWORK CONTROL
SYSTEM

CLAIM OF BENEFIT TO PRIOR APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 13/589,077, filed on Aug. 17,
2012, now issued as U.S. Pat. No. 9,178,833. U.S. patent
application Ser. No. 13/589,077 claims the benefit of U.S.
Provisional Application 61/551,425, filed Oct. 25,2011; U.S.
Provisional Application 61/551,427, filed Oct. 25,2011; U.S.
Provisional Application 61/577,085, filed Dec. 18,2011; U.S.
Provisional Application 61/595,027, filed Feb. 4, 2012; U.S.
Provisional Application 61/599,941, filed Feb. 17,2012; U.S.
Provisional Application 61/610,135, filed Mar. 13,2012; U.S.
Provisional Application 61/635,056, filed Apr. 18,2012; U.S.
Provisional Application 61/635,226, filed Apr. 18, 2012; and
U.S. Provisional Application 61/647,516, filed May 16, 2012.
This application claims the benefit of U.S. Provisional Appli-
cation 61/595,027, filed Feb. 4,2012; U.S. Provisional Appli-
cation 61/599,941, filed Feb. 17, 2012; U.S. Provisional
Application 61/610,135, filed Mar. 13, 2012; U.S. Provi-
sional Application 61/635,056, filed Apr. 18, 2012; U.S. Pro-
visional Application 61/635,226, filed Apr. 18, 2012; and
U.S. Provisional Application 61/647,516, filed May 16, 2012.
U.S. patent application Ser. No. 13/589,077, now issued as
U.S. Pat. No. 9,178,833, and U.S. Provisional Applications
61/551,425, 61/551,427, 61/577,085, 61/595,027, 61/599,
941, 61/610,135, 61/635,056, 61/635,226, and 61/647,516
are incorporated herein by reference.

BACKGROUND

Many current enterprises have large and sophisticated net-
works comprising switches, hubs, routers, servers, worksta-
tions and other networked devices, which support a variety of
connections, applications and systems. The increased sophis-
tication of computer networking, including virtual machine
migration, dynamic workloads, multi-tenancy, and customer
specific quality of service and security configurations require
a better paradigm for network control. Networks have tradi-
tionally been managed through low-level configuration of
individual components. Network configurations often
depend on the underlying network: for example, blocking a
user’s access with an access control list (“ACL”) entry
requires knowing the user’s current IP address. More com-
plicated tasks require more extensive network knowledge:
forcing guest users’ port 80 traffic to traverse an HTTP proxy
requires knowing the current network topology and the loca-
tion of each guest. This process is of increased difficulty
where the network switching elements are shared across mul-
tiple users.

In response, there is a growing movement towards a new
network control paradigm called Software-Defined Network-
ing (SDN). In the SDN paradigm, a network controller, run-
ning on one or more servers in a network, controls, maintains,
and implements control logic that governs the forwarding
behavior of shared network switching elements on a per user
basis. Making network management decisions often requires
knowledge of the network state. To facilitate management
decision-making, the network controller creates and main-
tains a view of the network state and provides an application
programming interface upon which management applica-
tions may access a view of the network state.
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Some of the primary goals of maintaining large networks
(including both datacenters and enterprise networks) are scal-
ability, mobility, and multi-tenancy. Many approaches taken
to address one of these goals results in hampering at least one
of the others. For instance, one can easily provide network
mobility for virtual machines within an [.2 domain, but 1.2
domains cannot scale to large sizes. Furthermore, retaining
user isolation greatly complicates mobility. As such,
improved solutions that can satisty the scalability, mobility,
and multi-tenancy goals are needed.

BRIEF SUMMARY

Some embodiments of the invention provide a network
control system that allows several different logical datapath
sets to be specified for several different users through one or
more shared forwarding elements without allowing the dif-
ferent users to control or even view each other’s forwarding
logic. These shared forwarding elements are referred to below
as managed switching elements or managed forwarding ele-
ments as they are managed by the network control system in
order to implement the logical datapath sets.

In some embodiments, the network control system
includes one or more controllers (also called controller
instances below) that allow the system to accept logical data-
path sets from users and to configure the switching elements
to implement these logical datapath sets. These controllers
allow the system to virtualize control of the shared switching
elements and the logical networks that are defined by the
connections between these shared switching elements, in a
manner that prevents the different users from viewing or
controlling each other’s logical datapath sets and logical net-
works while sharing the same switching elements.

In some embodiments, each controller instance is a device
(e.g., a general-purpose computer) that executes one or more
modules that transform the user input from a logical control
plane to a logical forwarding plane, and then transform the
logical forwarding plane data to physical control plane data.
These modules in some embodiments include a control mod-
ule and a virtualization module. A control module allows a
user to specify and populate a logical datapath set, while a
virtualization module implements the specified logical data-
path set by mapping the logical datapath set onto the physical
switching infrastructure. In some embodiments, the control
and virtualization modules are two separate applications,
while in other embodiments they are part of the same appli-
cation.

In some of the embodiments, the control module of a
controller receives logical control plane data (e.g., data that
describes the connections associated with a logical switching
element) that describes a logical datapath set from a user or
another source. The control module then converts this data to
logical forwarding plane data that is then supplied to the
virtualization module. The virtualization module then gener-
ates the physical control plane data from the logical forward-
ing plane data. The physical control plane data is propagated
to the managed switching elements. In some embodiments,
the control and virtualization modules use an nlLog engine to
generate logical forwarding plane data from logical control
plane data and physical control plane data from the logical
forwarding plane data.

The network control system of some embodiments uses
different controllers to perform different tasks. For instance,
in some embodiments, there are three or four types of con-
trollers. The first controller type is an application protocol
interface (API) controller. API controllers are responsible for
receiving configuration data and user queries from a user
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through API calls and responding to the user queries. The API
controllers also disseminate the received configuration datato
the other controllers. These controllers serve as the interface
between users and the network control system. A second type
of controller is a logical controller, which is responsible for
implementing logical datapath sets by computing universal
flow entries that are generic expressions of flow entries for the
managed switching element that realize the logical datapath
sets. A logical controller in some embodiments does not
interact directly with the physical switching elements, but
pushes the universal flow entries to a third type of controller,
a physical controller.

Physical controllers in different embodiments have difter-
ent responsibilities. In some embodiments, the physical con-
trollers generate customized flow entries from the universal
flow entries and push these customized tflow entries down to
the managed switching elements. In other embodiments, the
physical controller identifies for a particular managed, physi-
cal switching element a fourth type of controller, a chassis
controller, that is responsible for generating the customized
flow entries for a particular switching element, and forwards
the universal flow entries it receives from the logical control-
ler to the chassis controller. The chassis controller then gen-
erates the customized flow entries from the universal flow
entries and pushes these customized flow entries to the man-
aged switching elements. In yet other embodiments, physical
controllers generate customized flow entries for some man-
aged switching elements, while directing chassis controllers
to generate such flow entries for other managed switching
elements.

Depending on the size of the deployment managed by a
controller cluster, any number of each of the four types of
controller may exist within the cluster. In some embodiments,
a leader controller has the responsibility of partitioning the
load over all the controllers and effectively assigning a list of
logical datapath sets for each logical controller to manage and
a list of physical switching elements for each physical con-
troller to manage. In some embodiments, the API responsi-
bilities are executed at each controller in the cluster. However,
similar to the logical and physical responsibilities, some
embodiments only run the API responsibilities on a subset of
controllers. This subset, in some such embodiments, only
performs API processing, which results in better isolation
between the API operations and the rest of the system.

In some embodiments, the computation results (i.e., the
creation of flows) not only flow from the top of the hierarchy
towards the switching elements, but also may flow in the
opposite direction, from the managed switching elements to
the logical controllers. The primary reason for the logical
controller to obtain information from the switching elements
is the need to know the location of various virtual interfaces or
virtual network interfaces (VIFs) among the managed switch-
ing elements. That is, in order to compute the universal flow
entries for a logical datapath set, the logical controller is
required to know the physical location in the network of the
managed switching elements and the VIFs of the managed
switching elements.

In some embodiments, each managed switching elements
reports its VIFs to the physical controller responsible for the
switch. The physical controller then publishes this informa-
tion to all of the logical controllers. As such, the information
flow from the switching elements to the logical controllers is
done in a hierarchical manner, but one that is upside down
compared to the hierarchy used for computing the flow
entries. Because this information may potentially reach more
and more controllers as it traverses up the hierarchy, the
information should be limited in volume and not overly
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dynamic. This allows the publication of the information to
avoid becoming a scalability bottleneck for the system, while
enabling the information to be obtained by the upper layers of
the hierarchy as soon as (or very shortly after) the information
is generated at the switching elements.

There are other uses for publishing information upwards,
beyond the need to know the location of the VIFs in the
network. In some embodiments, various error-reporting sub-
systems at the controllers benefit from obtaining error reports
from the switching elements (in the case that such errors
exist). As with the VIF information, the switching elements of
some embodiments only publish minimal information about
the errors in order to limit the information volume (e.g., a
simple piece of data indicating that “chassis X has some
error”). Any interested controller may then pull additional
information from the switch.

Instead of requiring all the information needed by the con-
trollers to be published proactively, the network control sys-
tem of some embodiments has the controllers “pull’ the infor-
mation from the lower layers as needed. For certain types of
information, it may be difficult to determine in advance
whether the information is needed by any of the controllers
and, if it is needed, which of the controllers needs the infor-
mation. For this sort of information, the controllers of some
embodiments “pull” the information instead of passively
receiving information automatically published by the lower
layers. This enables the network control system in such
embodiments to avoid the overhead of publishing all the
information even when the information is not needed. The
overhead cost is paid only when the information is actually
needed, when the controllers pull the information.

Examples of information better off pulled by the control-
lers than automatically published by the managed switching
elements include the API operations that read information
from the lower layers of the system. For instance, when the
API requests statistics of a particular logical port, this infor-
mation must be obtained from the switch to which the par-
ticular logical port maps. As not all of the statistical informa-
tion would be consumed constantly, it would be a waste of
CPU resources to have the switching elements publishing this
information regularly. Instead, the controllers request this
information when needed. Some embodiments combine the
use of the upwards-directed publishing (push-based informa-
tion dissemination) with the pull-based dissemination. Spe-
cifically, the switching elements publish a minimal amount of
information indicating that more information is available, and
the controllers at the upper layers can then determine when
they need to pull the additional information.

The preceding Summary is intended to serve as a brief
introduction to some embodiments of the invention. It is not
meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred to
in the Detailed Description will further describe the embodi-
ments described in the Summary as well as other embodi-
ments. Accordingly, to understand all the embodiments
described by this document, a full review of the Summary,
Detailed Description and the Drawings is needed. Moreover,
the claimed subject matters are not to be limited by the illus-
trative details in the Summary, Detailed Description and the
Drawing, but rather are to be defined by the appended claims,
because the claimed subject matters can be embodied in other
specific forms without departing from the spirit of the subject
matters.
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BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation, sev-
eral embodiments of the invention are set forth in the follow-
ing figures.

FIG. 1 illustrates a virtualized network system of some
embodiments of the invention.

FIG. 2 presents one example that illustrates the function-
ality of a network controller.

FIG. 3 illustrates the switch infrastructure of a multi-user
server hosting system.

FIG. 4 illustrates a network controller that manages edge
switching elements.

FIG. 5 illustrates an example of multiple logical switching
elements implemented across a set of switching elements.

FIG. 6 illustrates a network architecture of some embodi-
ments which implements a logical router and logical switch-
ing.

FIG. 7 further elaborates on the propagation of the instruc-
tions to control a managed switching element through the
various processing layers of the controller instances of some
embodiments of the invention.

FIG. 8 illustrates a multi-instance, distributed network
control system of some embodiments.

FIG. 9 illustrates an example of specifying a master con-
troller instance for a switching element (i.e., a physical con-
troller) in a distributed that is similar to the system of FIG. 8.

FIG. 10 illustrates an example operation of several control-
ler instances that function as a controller for distributing
inputs, a master controller of a LDPS, and a master controller
of' a managed switching element.

FIG. 11 illustrates an example of maintaining the records in
different storage structures.

FIG. 12 conceptually illustrates software architecture for
an input translation application.

FIG. 13 conceptually illustrates an example conversion
operations that an instance of a control application of some
embodiments performs.

FIG. 14 illustrates a control application of some embodi-
ments of the invention.

FIG. 15 conceptually illustrates an example of such con-
version operations that the virtualization application of some
embodiments performs.

FIG. 16 illustrates a virtualization application of some
embodiments of the invention.

FIG. 17 conceptually illustrates a table in the RE output
tables can be an RE input table, a VA output table, or both an
RE input table and a VA output table.

FIG. 18 illustrates a development process that some
embodiments employ to develop the rules engine of the vir-
tualization application.

FIG. 19 illustrates a rules engine that some embodiments
implements a partitioned management of a LDPS by having a
join to the LDPS entry be the first join in each set of join
operations that is not triggered by an event in a LDPS input
table.

FIG. 20 conceptually illustrates a process that the virtual-
ization application performs in some embodiments each time
arecord in an RE input table changes.

FIG. 21 illustrates an example of a set of join operations.

FIG. 22 illustrates an example of a set of join operations
failing when they relate to a LDPS that does not relate to an
input table event that has occurred.

FIG. 23 illustrates a simplified view of the table mapping
operations of the control and virtualization applications of
some embodiments of the invention.
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FIG. 24 illustrates an example of an integrated application.

FIG. 25 illustrates another example of such an integrated
application.

FIG. 26 illustrates additional details regarding the opera-
tion of the integrated application of some embodiments of the
invention.

FIG. 27 conceptually illustrates an example architecture of
a network control system.

FIG. 28 conceptually illustrates an example architecture of
a network control system.

FIG. 29 illustrates an example architecture for a chassis
control application.

FIG. 30 conceptually illustrates an example architecture of
a network control system.

FIG. 31 illustrates an example architecture of a host on
which a managed switching element runs.

FIGS. 32A and 32B illustrate an example creation of a
tunnel between two managed switching elements based on
universal control plane data.

FIG. 33 conceptually illustrates a process that some
embodiments perform to generate, from universal physical
control plane data, customized physical control plane data
that specifies the creation and use of a tunnel between two
managed switching element elements.

FIG. 34 conceptually illustrates a process that some
embodiments perform to generate customized tunnel flow
instructions and to send the customized instructions to a man-
aged switching element so that the managed switching ele-
ment can create a tunnel and send the data to a destination
through the tunnel.

FIGS. 35A and 35B conceptually illustrate in seven differ-
ent stages an example operation of a chassis controller that
translates universal tunnel flow instructions into customized
instructions for a managed switching element to receive and
use.

FIG. 36 illustrates an example of enabling Quality of Ser-
vice (QoS) for a logical port of a logical switch.

FIGS. 37A, 37B, 37C, 37D, 37E, 37F, and 37G conceptu-
ally illustrate an example of enabling QoS for a port of a
logical switch.

FIG. 38 conceptually illustrates an example of enabling
port security for a logical port of a logical switch.

FIGS. 39A, 39B, 39C, and 39D conceptually illustrate an
example of generating universal control plane data for
enabling port security for a port of a logical switch.

FIG. 40 conceptually illustrates software architecture for
an input translation application.

FIG. 41 conceptually illustrates software architecture for a
control application.

FIG. 42 conceptually illustrates software architecture for a
virtualization application.

FIG. 43 conceptually illustrates software architecture for
an integrated application.

FIG. 44 conceptually illustrates a chassis control applica-
tion.

FIG. 45 conceptually illustrates a scheduler of some
embodiments.

FIGS. 46 A and 46B illustrate in three different stages that
the scheduler processing of the input event data for an input
event.

FIGS. 47A and 47B illustrate that the scheduler processes
two input event data for two different input events in three
different stages.

FIGS. 48A and 48B illustrate that the scheduler processes
input event data for two different input events in three difter-
ent stages.
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FIGS. 49A, 49B and 49C illustrate that the scheduler of
some embodiments employs several different scheduling
schemes including the scheduling scheme based on start and
end tags.

FIG. 50 conceptually illustrates a process that the control
application of some embodiments performs to classify input
event data and update input tables based on the input event
data.

FIG. 51 conceptually illustrates an example architecture
for a network control system of some embodiments that
employs this two-step approach.

FIG. 52 conceptually illustrates a process that some
embodiments perform to send the updates to the managed
switching elements for all paths defined by the LDPS.

FIG. 53 illustrates an example managed switching element
to which several controllers have established several commu-
nication channels to send updates to the managed switching
element.

FIGS. 54A and 54B conceptually illustrate a managed
switching element and a processing pipeline performed by
the managed switching element to process and forward pack-
ets coming to the managed switching element.

FIG. 55 conceptually illustrates an example physical con-
troller that receives inputs from a logical controller.

FIG. 56 conceptually illustrates an example physical con-
troller that receives inputs from logical controllers.

FIG. 57 conceptually illustrates an example architecture of
a network control system, in which the managed switching
elements disseminate among themselves at least a portion of
the network state updates.

FIG. 58 illustrates examples of the use of these operations
within a managed network.

FIG. 59 conceptually illustrates the architecture of an edge
switching element in a pull-based dissemination network of
some embodiments.

FIG. 60 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it will be clear and
apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

Some embodiments of the invention provide a network
control system that allows several different logical datapath
sets to be specified for several different users through one or
more shared forwarding elements without allowing the dif-
ferent users to control or even view each other’s forwarding
logic. The shared forwarding elements in some embodiments
can include virtual or physical network switches, software
switches (e.g., Open vSwitch), routers, and/or other switch-
ing devices, as well as any other network elements (such as
load balancers, etc.) that establish connections between these
switches, routers, and/or other switching devices. Such for-
warding elements (e.g., physical switches or routers) are also
referred to below as switching elements. In contrast to an off
the shelf switch, a software forwarding element is a switching
element that in some embodiments is formed by storing its
switching table(s) and logic in the memory of a standalone
device (e.g., a standalone computer), while in other embodi-
ments, it is a switching element that is formed by storing its
switching table(s) and logic in the memory of a device (e.g.,
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a computer) that also executes a hypervisor and one or more
virtual machines on top of that hypervisor.

These managed, shared switching elements are referred to
below as managed switching elements or managed forward-
ing elements as they are managed by the network control
system in order to implement the logical datapath sets. In
some embodiments described below, the control system man-
ages these switching elements by pushing physical control
plane data to them, as further described below. Switching
elements generally receive data (e.g., a data packet) and per-
form one or more processing operations on the data, such as
dropping a received data packet, passing a packet that is
received from one source device to another destination
device, processing the packet and then passing it to a desti-
nation device, etc. In some embodiments, the physical control
plane data that is pushed to a switching element is converted
by the switching element (e.g., by a general purpose proces-
sor of the switching element) to physical forwarding plane
data that specify how the switching element (e.g., how a
specialized switching circuit of the switching element) pro-
cesses data packets that it receives.

In some embodiments, the network control system
includes one or more controllers (also called controller
instances below) that allow the system to accept logical data-
path sets from users and to configure the switching elements
to implement these logical datapath sets. These controllers
allow the system to virtualize control of the shared switching
elements and the logical networks that are defined by the
connections between these shared switching elements, in a
manner that prevents the different users from viewing or
controlling each other’s logical datapath sets and logical net-
works while sharing the same managed switching elements.

In some embodiments, each controller instance is a device
(e.g., a general-purpose computer) that executes one or more
modules that transform the user input from a logical control
plane to a logical forwarding plane, and then transform the
logical forwarding plane data to physical control plane data.
These modules in some embodiments include a control mod-
ule and a virtualization module. A control module allows a
user to specify and populate a logical datapath set, while a
virtualization module implements the specified logical data-
path set by mapping the logical datapath set onto the physical
switching infrastructure. In some embodiments, the control
and virtualization modules express the specified or mapped
data in terms of records that are written into a relational
database data structure. That is, the relational database data
structure stores both the logical datapath input received
through the control module and the physical data to which the
logical datapath input is mapped by the virtualization module.
In some embodiments, the control and virtualization applica-
tions are two separate applications, while in other embodi-
ments they are part of the same application.

The above describes several examples of the network con-
trol system. Several more detailed embodiments are
described below. First, Section I introduces a network con-
trolled by distributed controller instances. Section II then
describes the virtualized control system of some embodi-
ments. Section 11 follows with a description of scheduling in
the control system of some embodiments. Next, Section IV
describes the universal forwarding state used in some
embodiments. Section V describes the use of transactionality.
Next, Section VI describes the distribution of network state
between switching elements in some embodiments of the
control system. Section VII then describes logical forwarding
environment for some embodiments. Finally, Section VIII
describes an electronic system with which some embodi-
ments of the invention are implemented.
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1. Distributed Controller Instances

As mentioned, some of the embodiments described below
are implemented in a novel network control system that is
formed by one or more controllers (controller instances) for
managing several managed switching elements. In some
embodiments, the control application of a controller receives
logical control plane data (e.g., network control plane), and
converts this data to logical forwarding plane data that is then
supplied to the virtualization application. The virtualization
application then generates the physical control plane data
from the logical forwarding plane data. The physical control
plane data is propagated to the managed switching elements.

In some embodiments, the controller instance uses a net-
work information base (NIB) data structure to send the physi-
cal control plane data to the managed switching elements.
Several examples of using the NIB data structure to send the
data down to the managed switching elements are described
in U.S. patent application Ser. Nos. 13/177,529, now issued as
U.S. Pat. No. 8,743,889 and 13/177,533, now issued as U.S.
Pat. No. 8,817,620, which are incorporated herein by refer-
ence. As described in the U.S. application Ser. Nos. 13/177,
529 and 13/177,533, a controller instance of some embodi-
ments uses an nlog engine to generate logical forwarding
plane data from logical control plane data and physical con-
trol plane data from the logical forwarding plane data. The
controller instances of some embodiments communicate with
each other to exchange the generated logical and physical
data. In some embodiments, the NIB data structure may serve
as a communication medium between different controller
instances. However, some embodiments of the invention
described below do not use the NIB data structure and instead
use one or more communication channels (e.g., RPC calls) to
exchange the logical data and/or the physical data between
different controller instances, and to exchange other data
(e.g., API calls) between the controller instances. The follow-
ing describes such a network control system in greater detail.

The network control system of some embodiments uses
different controllers to perform different tasks. The network
control system of some embodiments includes groups of con-
trollers, with each group having different kinds of responsi-
bilities. Some embodiments implement a controller cluster in
a dynamic set of physical servers. Thus, as the size of the
deployment increases, or when a particular controller or
physical server on which a controller is operating fails, the
cluster and responsibilities within the cluster are reconfigured
among the remaining active controllers. In order to manage
such reconfigurations, the controllers in the cluster of some
embodiments run a consensus algorithm to determine a leader
controller. The leader controller partitions the tasks for which
each controller instance in the cluster is responsible by
assigning a master controller for a particular work item, and
in some cases a hot-standby controller to take over in case the
master controller fails.

Within the controller cluster of some embodiments, there
are three or four types of controllers categorized based on
three kinds of controller responsibilities. The first controller
type is an application protocol interface (API) controller. API
controllers are responsible for receiving configuration data
and user queries from a user through API calls and responding
to the user queries. The API controllers also disseminate the
received configuration data to the other controllers. These
controllers serve as the interface between users and the net-
work control system. In some embodiment, the API control-
lers are referred to as input translation controllers. A second
type of controller is a logical controller, which is responsible
for implementing logical datapath sets by computing univer-
sal flow entries that realize the logical datapath sets.
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Examples of universal flow entries are described below. A
logical controller in some embodiments does not interact
directly with the physical switching elements, but pushes the
universal flow entries to a third type of controller, a physical
controller.

Physical controllers in different embodiments have differ-
ent responsibilities. In some embodiments, the physical con-
trollers generate customized flow entries from the universal
flow entries and push these customized flow entries down to
the managed switching elements. In other embodiments, the
physical controller identifies for a particular managed, physi-
cal switching element a fourth type of controller, a chassis
controller, that is responsible for generating the customized
flow entries for a particular switching element, and forwards
the universal flow entries it receives from the logical control-
ler to the chassis controller. The chassis controller then gen-
erates the customized flow entries from the universal flow
entries and pushes these customized flow entries to the man-
aged switching elements. In yet other embodiments, physical
controllers generate customized flow entries for some man-
aged switching elements, while directing chassis controllers
to generate such flow entries for other managed switching
elements.

Depending on the size of the deployment managed by a
controller cluster, any number of each of the four types of
controller may exist within the cluster. In some embodiments,
the leader controller has the responsibility of partitioning the
load over all the controllers and effectively assigning a list of
logical datapath sets for each logical controller to manage and
a list of physical switching elements for each physical con-
troller to manage. In some embodiments, the API responsi-
bilities are executed at each controller in the cluster. However,
similar to the logical and physical responsibilities, some
embodiments only run the API responsibilities on a subset of
controllers. This subset, in some such embodiments, only
performs API processing, which results in better isolation
between the API operations and the rest of the system.

In some embodiments, the design spectrum for the com-
puting the forwarding state by the controllers spans from
either a completely centralized control system to a com-
pletely distributed control system. In a fully centralized sys-
tem, for example, a single controller manages the entire net-
work. While this design is simple to analyze and implement,
it runs into difficulty in meeting practical scalability require-
ments. A fully distributed network control system, on the
other hand, provides both redundancy and scaling, but comes
with the challenge of designing a distributed protocol per
network control problem. Traditional routing protocols dis-
tributed among the routers of a network are an example of
such a distributed solution.

In the virtualization solution of some embodiments, the
network controller system strikes a balance between these
goals of achieving the necessary scaling and redundancy
without converging towards a fully decentralized solution
that would potentially be very complicated to both analyze
and implement. Thus, the controllers of some embodiments
are designed to run in a hierarchical manner with each layer in
the hierarchy responsible for certain functionalities or tasks.
The higher layers of the hierarchy focus on providing control
over all of the aspects managed by the system, whereas the
lower layers become more and more localized in scope.

Atthe topmost level of the hierarchy in some embodiments
are the logical controllers. In some embodiments, each logi-
cal datapath set is managed by a single logical controller.
Thus, a single controller has full visibility to the state for the
logical datapath set, and the computation (e.g., to generate
flows) for any particular logical datapath set is “centralized”
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in a single controller, without requiring distribution over mul-
tiple controllers. Different logical controllers are then respon-
sible for different logical datapath sets, which provides the
easy scalability at this layer. The logical controllers push the
results of the computation, which are universal flow-based
descriptions of the logical datapath sets, to the physical con-
trollers at the next layer below.

In some embodiments, the physical controllers are the
boundary between the physical and logical worlds of the
control system. Each physical controller manages a subset of
the managed switching elements of the network and is
responsible for obtaining the universal flow information from
the logical controllers and either (1) generating customized
flow entries for its switching elements and pushing the cus-
tomized flow entries to its switching elements, or (2) pushing
the received universal flow information to each switching
element’s chassis controller and having this chassis controller
generate the customized flow entries for its switching element
and push the generated flow entries to its switching element.
In other words, the physical controllers or chassis controllers
of some embodiments translate the flow entries from a first
physical control plane (a universal physical control plane)
that is generic for any managed switching element used to
implement a logical datapath set into a second physical con-
trol plane (a customized physical control plane) that is cus-
tomized for a particular managed switching element associ-
ated with the physical controller or chassis controller.

As the number of switching elements (e.g., both hardware
and software switching elements) managed by the system
increases, more physical controllers can be added so that the
load of the switch management does not become a scalability
bottleneck. However, as the span of the logical datapath set
(i.e., the number of physical machines that host virtual
machines connected to the logical datapath set) increases, the
number of the logical datapath sets for which a single physical
controller is responsible increases proportionally. If the num-
ber of logical datapath sets that the physical controller is
required to handle grows beyond its limits, the physical con-
troller could become a bottleneck in the system. Nevertheless,
in embodiments where the physical controllers of some
embodiments is primarily responsible for moving universal
flow entries to chassis controller of physical switching ele-
ments that need the universal flows, the computational over-
head per logical datapath set should remain low.

In some embodiments, the chassis controllers of the man-
aged switching elements are at the lowest level of the hierar-
chical network control system. Each chassis controller
receives universal flow entries from a physical controller, and
customizes these flow entries into a custom set of flow entries
for its associated managed switching element. In some
embodiments, the chassis controller runs within its managed
switching element or adjacent to its managed switching ele-
ment.

The chassis controller is used in some embodiments to
minimize the computational load on the physical controller.
In these embodiments, the physical controllers primarily act
as a relay between the logical controllers and the chassis
controller to direct the universal flow entries to the correct
chassis controller for the correct managed switching ele-
ments. In several embodiments described below by reference
to figures, the chassis controllers are shown to be outside of
the managed switching elements. Also, in several of these
embodiments, the chassis controllers operate on the same
host machine (e.g., same computer) on which the managed
software switching element executes. In some embodiments,
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the switching elements receive OpenFlow entries (and
updates over the configuration protocol) from the chassis
controller.

When placing the chassis controllers within or adjacent to
the switching elements is not possible, the physical control-
lers in some embodiments continue to perform the computa-
tion to translate universal flow information to customized
flow information and send the physical flow information (us-
ing OpenFlow and configuration protocols) to the switching
elements in which the chassis controllers are not available.
For instance, some hardware switching elements may not
have the capability to run a controller. When the physical
controller does not perform such customization and no con-
troller chassis is available for a particular managed switching
element, another technique used by some embodiments is to
employ daemons to generate custom physical control plane
data from the universal physical control plane data. These
alternative techniques are further described below.

As described above, the computation results (i.e., the cre-
ation of flows) flow from the top of the hierarchy towards the
switching elements. In addition, information may flow in the
opposite direction, from the managed switching elements to
the logical controllers. The primary reason for the logical
controller to obtain information from the switching elements
is the need to know the location of various virtual interfaces or
virtual network interfaces (VIFs) among the managed switch-
ing elements. That is, in order to compute the universal flow
entries for a logical datapath set, the logical controller is
required to know the physical location in the network of the
managed switching elements and the VIFs of the managed
switching elements.

In some embodiments, each managed switching elements
reports its VIFs to the physical controller responsible for the
switch. The physical controller then publishes this informa-
tion to all of the logical controllers. As such, the information
flow from the switching elements to the logical controllers is
done in a hierarchical manner, but one that is upside down
compared to the hierarchy used for computing the flow
entries. Because this information may potentially reach more
and more controllers as it traverses up the hierarchy, the
information should be limited in volume and not overly
dynamic. This allows the publication of the information to
avoid becoming a scalability bottleneck for the system, while
enabling the information to be obtained by the upper layers of
the hierarchy as soon as (or very shortly after) the information
is generated at the switching elements.

There are other uses for publishing information upwards,
beyond the need to know the location of the VIFs in the
network. In some embodiments, various error-reporting sub-
systems at the controllers benefit from obtaining error reports
from the switching elements (in the case that such errors
exist). As with the VIF information, the switching elements of
some embodiments only publish minimal information about
the errors in order to limit the information volume (e.g., a
simple piece of data indicating that “chassis X has some
error”). Any interested controller may then pull additional
information from the switch.

Instead of requiring all the information needed by the con-
trollers to be published proactively, the network control sys-
tem of some embodiments has the controllers “pull’ the infor-
mation from the lower layers as needed. For certain types of
information, it may be difficult to determine in advance
whether the information is needed by any of the controllers
and, if it is needed, which of the controllers needs the infor-
mation. For this sort of information, the controllers of some
embodiments “pull” the information instead of passively
receiving information automatically published by the lower
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layers. This enables the network control system in such
embodiments to avoid the overhead of publishing all the
information even when the information is not needed. The
overhead cost is paid only when the information is actually
needed, when the controllers pull the information.

Examples of information better off pulled by the control-
lers than automatically published by the managed switching
elements include the API operations that read information
from the lower layers of the system. For instance, when the
API requests statistics of a particular logical port, this infor-
mation must be obtained from the switch to which the par-
ticular logical port maps. As not all of the statistical informa-
tion would be consumed constantly, it would be a waste of
CPU resources to have the switching elements publishing this
information regularly. Instead, the controllers request this
information when needed.

The downside to pulling information as opposed to receiv-
ing published information is responsiveness. Only by pulling
a particular piece of information does a controller know
whether the information was worth retrieving (e.g., whether
the pulled value has changed or not since the last pull). To
overcome this downside, some embodiments combine the use
of the upwards-directed publishing (push-based information
dissemination) with the pull-based dissemination. Specifi-
cally, the switching elements publish a minimal amount of
information indicating that more information is available, and
the controllers at the upper layers can then determine when
they need to pull the additional information.

Various mechanisms are used by some embodiments in
order to realize the network control system described above.
This application will describe both computational mecha-
nisms (e.g., for translating the forwarding state between data
planes) as well as mechanisms for disseminating information
(both intra-controller communication and controller-switch
communication).

The computation of the forwarding state within a single
controller may be performed by using an nlLog engine in some
embodiments. For both directions of information flow (logi-
cal controller to switch and switch to logical controller), the
nl.og engine running in a controller takes as input events
received from other controllers or switching elements and
outputs new events to send to the other controllers/switching
elements. To compute the forwarding state, at each level of
the hierarchy an nlLog engine is responsible for receiving the
network state (e.g., in the form of tuples) from the higher
layers, computing the state in a new data plane (e.g., also in
the form of tuples), and pushing the computed information
downwards. To publish information upwards, the controllers
and switching elements use the same approach in some
embodiments, with only the direction and type of computa-
tions performed by the nlLog engine being different. That is,
the nLLog engine receives the network state (tuples) from the
lower layers and computes the state in a new data plane
(tuples) to be published or pulled upwards.

API queries are “computed” in some embodiments. In
some embodiments, the API query processing can be trans-
formed into nLLog processing: an incoming event corresponds
to a query, which may result in a tuple being computed
locally. Similarly, the query processing may result in recur-
sive query processing: the query processing at the first level
controllers results in a new tuple that corresponds to a query
to be sent to next level controllers; and the first query does not
finish before it receives the response from the controller
below.

Thus, some embodiments include a hierarchy of control-
lers that each locally uses nlLog to process received updates/
requests and produce new updates/responses. In order to
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carry out such a hierarchy, the controllers need to be able to
communicate with each other. As the computation in these
embodiments is based on nl.og, tuples are the primary for of
state information that needs to be transferred for the forward-
ing state and API querying. As such, some embodiments
allow the nlLog instances to directly integrate with a channel
that provides a tuple-level transport between controllers, so
that nLLog instances can easily send tuples to other controllers.
Using this channel, nlLog can provide the publishing of infor-
mation both upwards and downwards, as well as implement
the query-like processing using tuples to correspond queries
and the responses to the queries.

The channel used for this communication in some embodi-
ments is a remote procedure call (RPC) channel providing
batching of tuple updates (so that an RPC call is not required
for every tuple and an RPC call handles a batch of tuples). In
addition, the transactional aspects utilize a concept of commit
(both blocking and non-blocking) from the channel in some
embodiments.

By using the RPC channels to exchange tuples directly
among controllers and switching elements, the network con-
trol system of some embodiments can avoid using an
objected-oriented programming presentation (e.g., the NIB
presentation described in U.S. patent application Ser. No.
13/177,529) of the state exchanged between the controllers.
That is, the nlLog instances in some embodiments transform
the inputs/outputs between the NIB and tuple formats when
entering or leaving the nLLog runtime system, while in other
embodiments such translation becomes unnecessary and the
implementation becomes simpler because the tuples can be
exchanged directly among controllers and switching ele-
ments. Thus, in these embodiments, the state dissemination
mechanism is actually point-to-point between controllers.

However, the information flows among the controllers of
these embodiments possess two identifiable patterns built on
the point-to-point channels. The first such information flow
pattern is flooding. Certain information (e.g., the location of
VIFs) is flooded to a number of controllers, by sending the
same information across multiple RPC channels. The second
such pattern is point-to-point information flow. Once minimal
information has been flooded so that a controller can identify
which available information is actually needed, the control-
lers can then transfer the majority of the information across
RPC channels directly between the producing and consuming
controllers, without reverting to more expensive flooding.

Prior to a more extensive discussion of the network control
system of some embodiments, some examples of its use will
now be provided. First, in order to compute flows, an API
controller of some embodiments creates an RPC channel to a
logical controller responsible for a logical datapath set and
sends logical datapath set configuration information to the
logical controller. In addition, the API controller sends physi-
cal chassis configuration information to a physical controller
managing the chassis. The physical controller receives VIF
locations from its managed switching elements, and floods
the VIF locations to all of the logical controllers. This infor-
mation allows the logical controller to identify the one or
more physical chassis that host the VIFs belonging to the
logical datapath set. Using this information, the logical con-
troller computes the universal flows for the logical datapath
set and creates an RPC channel to the physical controllers that
manage the chassis hosting the logical datapath set in order to
push the universal flow information down to these physical
controllers. The physical controller can then relay the univer-
sal flows (or translated physical flows) down to the chassis
controller at the managed switch.
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A second example use of the network control system is the
processing of an API query. In some embodiments, an API
controller receives a request for port statistics for a particular
logical port. The API controller redirects the request to the
logical controller responsible for managing the logical data-
path set that contains the particular logical port. The logical
controller then queries the physical controller that hosts the
VIF bound to the particular logical port, and the physical
controller in turn queries the chassis (or chassis controller) at
which the VIF is located for this information, and responds
back. Each of these information exchanges (API controller to
logical controller to physical controller to chassis, and back)
occurs over RPC channels.

II. Virtualized Control System

A. External Layers for Pushing Flows to Control Layer

FIG. 1 illustrates a virtualized network system 100 of some
embodiments of the invention. This system allows multiple
users to create and control multiple different LDP sets on a
shared set of network infrastructure switching elements (e.g.,
switches, virtual switches, software switches, etc.). In allow-
ing a user to create and control the user’s set of LDP sets (i.e.,
the user’s switching logic), the system does not allow the user
to have direct access to another user’s set of LDP sets in order
to view or modify the other user’s switching logic. However,
the system does allow different users to pass packets through
their virtualized switching logic to each other if the users
desire such communication.

As shown in FIG. 1, the system 100 includes one or more
switching elements 105 and a network controller 110. The
switching elements include N switching devices (where N is
a number equal to one or greater) that form the network
infrastructure switching elements of the system 100. In some
embodiments, the network infrastructure switching elements
includes virtual or physical network switches, software
switches (e.g., Open vSwitch), routers, and/or other switch-
ing devices, as well as any other network elements (such as
load balancers, etc.) that establish connections between these
switches, routers, and/or other switching devices. All such
network infrastructure switching elements are referred to
below as switching elements or forwarding elements.

The virtual or physical switching devices 105 typically
include control switching logic 125 and forwarding switching
logic 130. In some embodiments, a switch’s control logic 125
specifies (1) the rules that are to be applied to incoming
packets, (2) the packets that will be discarded, and (3) the
packet processing methods that will be applied to incoming
packets. The virtual or physical switching elements 105 use
the control logic 125 to populate tables governing the for-
warding logic 130. The forwarding logic 130 performs
lookup operations on incoming packets and forwards the
incoming packets to destination addresses.

As further shown in FIG. 1, the network controller 110
includes a control application 115 through which switching
logic is specified for one or more users (e.g., by one or more
administrators or users) in terms of LDP sets. The network
controller 110 also includes a virtualization application 120
that translates the LDP sets into the control switching logic to
be pushed to the switching devices 105. In this application,
the control application and the virtualization application are
referred to as “control engine” and “virtualization engine” for
some embodiments.

In some embodiments, the virtualization system 100
includes more than one network controller 110. The network
controllers include logical controllers that each is responsible
for specifying control logic for a set of switching devices for
a particular LDPS. The network controllers also include
physical controllers that each pushes control logic to a set of
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switching elements that the physical controller is responsible
for managing. In other words, a logical controller specifies
control logic only for the set of switching elements that imple-
ment the particular LDPS while a physical controller pushes
the control logic to the switching elements that the physical
controller manages regardless of the LDP sets that the switch-
ing elements implement.

In some embodiments, the virtualization application of a
network controller uses a relational database data structure to
store a copy of the switch-element states tracked by the vir-
tualization application in terms of data records (e.g., data
tuples). The switch-element tracking will be described in
detail further below. These data records represent a graph of
all physical or virtual switching elements and their intercon-
nections within a physical network topology and their for-
warding tables. For instance, in some embodiments, each
switching element within the network infrastructure is repre-
sented by one or more data records in the relational database
data structure. However, in other embodiments, the relational
database data structure for the virtualization application
stores state information about only some of the switching
elements. For example, as further described below, the virtu-
alization application in some embodiments only keeps track
of switching elements at the edge of a network infrastructure.
In yet other embodiments, the virtualization application
stores state information about edge switching elements in a
network as well as some non-edge switching elements in the
network that facilitate communication between the edge
switching elements.

In some embodiments, the relational database data struc-
ture is the heart of the control model in the virtualized net-
work system 100. Under one approach, applications control
the network by reading from and writing to the relational
database data structure. Specifically, in some embodiments,
the application control logic can (1) read the current state
associated with network entity records in the relational data-
base data structure and (2) alter the network state by operating
on these records. Under this model, when a virtualization
application 120 needs to modify a record in a table (e.g., a
control plane flow table) of a switching element 105, the
virtualization application 120 first writes one or more records
that represent the table in the relational database data struc-
ture. The virtualization application then propagates this
change to the switching element’s table.

In some embodiments, the control application also uses the
relational database data structure to store the logical configu-
ration and the logical state for each user specified LDPS. In
these embodiments, the information in the relational database
data structure that represents the state of the actual switching
elements accounts for only a subset of the total information
stored in the relational database data structure.

In some embodiments, the control and virtualization appli-
cations use a secondary data structure to store the logical
configuration and the logical state for a user specified LDPS.
This secondary data structure in these embodiments serves as
a communication medium between different network con-
trollers. For instance, when a user specifies a particular LDPS
using a logical controller that is not responsible for the par-
ticular LDPS, the logical controller passes the logical con-
figuration for the particular LDPS to another logical control-
ler that is responsible for the particular LDPS via the
secondary data structures ofthese logical controllers. In some
embodiments, the logical controller that receives from the
user the logical configuration for the particular LDPS passes
the configuration data to all other controllers in the virtualized
network system. In this manner, the secondary storage struc-
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ture in every logical controller includes the logical configu-
ration data for all LDP sets for all users in some embodiments.

The operating system of some embodiments provides a set
of different communication constructs (not shown) for the
control and virtualization applications and the switching ele-
ments 105 of different embodiments. For instance, in some
embodiments, the operating system provides a managed
switching element communication interface (not shown)
between (1) the switching elements 105 that perform the
physical switching for any one user, and (2) the virtualization
application 120 that is used to push the switching logic for the
users to the switching elements. In some of these embodi-
ments, the virtualization application manages the control
switching logic 125 of a switching element through a com-
monly known switch-access interface that specifies a set of
APIs for allowing an external application (such as a virtual-
ization application) to control the control plane functionality
of a switching element. Specifically, the managed switching
element communication interface implements the set of APIs
so that the virtualization application can send the records
stored in the relational database data structure to the switch-
ing elements using the managed switching element commu-
nication interface. Two examples of such known switch-ac-
cess interfaces are the OpenFlow interface and the Open
Virtual Managed switching element communication inter-
face, which are respectively described in the following two
papers: McKeown, N. (2008). OpenFlow: Enabling Innova-
tion in Campus Networks (which can be retrieved from http://
www.openflowswitch.org//documents/opentlow-wp-latest-
.pdf), and Pettit, J. (2010). Virtual Switching in an Era of
Advanced Edges (which can be retrieved from http://open-
vswitch.org/papers/dccaves2010.pdf). These two papers are
incorporated herein by reference.

It is to be noted that for those embodiments described
above and below where the relational database data structure
is used to store data records, a data structure that can store data
in the form of object-oriented data objects can be used alter-
natively or conjunctively. An example of such data structure is
the NIB data structure.

FIG. 1 conceptually illustrates the use of switch-access
APIs through the depiction of halos 135 around the control
switching logic 125. Through these APIs, the virtualization
application can read and write entries in the control plane flow
tables. The virtualization application’s connectivity to the
switching elements’ control plane resources (e.g., the control
plane tables) is implemented in-band (i.e., with the network
traffic controlled by the operating system) in some embodi-
ments, while it is implemented out-of-band (i.e., over a sepa-
rate physical network) in other embodiments. There are only
minimal requirements for the chosen mechanism beyond
convergence on failure and basic connectivity to the operating
system, and thus, when using a separate network, standard
IGP protocols such as IS-IS or OSPF are sufficient.

In order to define the control switching logic 125 for
switching elements when the switching elements are physical
switching elements (as opposed to software switches), the
virtualization application of some embodiments uses the
Open Virtual Switch protocol to create one or more control
tables within the control plane of a switch. The control plane
is typically created and executed by a general purpose CPU of
the switching element. Once the system has created the con-
trol table(s), the virtualization application then writes flow
entries to the control table(s) using the OpenFlow protocol.
The general purpose CPU of the physical switching element
uses its internal logic to convert entries written to the control
table(s) to populate one or more forwarding tables in the
forwarding plane of the switching element. The forwarding
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tables are created and executed typically by a specialized
switching chip of the switching element. Through its execu-
tion of the flow entries within the forwarding tables, the
switching chip of the switching element can process and route
packets of data that it receives.

In some embodiments, the virtualized network system 100
includes a chassis controller in addition to logical and physi-
cal controllers. In these embodiments, the chassis controller
implements the switch-access APIs to manage a particular
switching element. That is, it is the chassis controller that
pushes the control logic to the particular switching element.
The physical controller in these embodiments functions as an
aggregation point to relay the control logic from the logical
controllers to the chassis controllers interfacing the set of
switching elements for which the physical controller is
responsible. The physical controller distributes the control
logic to the chassis controllers managing the set of switching
elements. In these embodiments, the managed switching ele-
ment communication interface that the operating system of a
network controller establishes a communication channel
(e.g., a Remote Procedure Call (RPC) channel) between a
physical controller and a chassis controller so that the physi-
cal controller can send the control logic stored as data records
in the relational database data structure to the chassis control-
ler. The chassis controller in turn will push the control logic to
the switching element using the switch-access APIs or other
protocols.

The communication constructs that the operating system of
some embodiments provides also include an exporter (not
shown) that a network controller can use to send data records
to another network controller (e.g., from a logical controller
to another logical controller, from a physical controller to
another physical controller, from a logical controller to a
physical controller, from a physical controller to a logical
controller, etc.). Specifically, the control application and the
virtualization application of a network controller can export
the data records stored in the relational database data struc-
ture to one or more other network controllers using the
exporter. In some embodiments, the exporter establishes a
communication channel (e.g., an RPC channel) between two
network controllers so that one network controller can send
data records to another network controller over the channel.

The operating system of some embodiments also provides
an importer that a network controller can use to receive data
records from an network controller. The importer of some
embodiments functions as a counterpart to the exporter of
another network controller. That is, the importer is on the
receiving end of the communication channel established
between two network controllers. In some embodiments, the
network controllers follow a publish-subscribe model in
which a receiving controller subscribes to channels to receive
data only from the network controllers that supply the data in
which the receiving controller is interested.

B. Pushing Flows

FIG. 2 presents one example that illustrates the function-
ality of a network controller. In particular, this figure illus-
trates in four stages 201-204 the modification of a record
(e.g., aflow tablerecord) in a managed switching element 205
by a network controller 200. In this example, the managed
switching element 205 has a switch logic record 230. As
shown in stage 201 of FIG. 2, records 240 stores two records
220 and 225 that correspond to the switch logic record 230 of
the switch. In some embodiments, the records 220 and 225 are
stored in a relational database data structure 240 to and from
which the control engine and the virtualization engine of a
network controller write data and get data. The record 220
holds logical data that is an output of the control engine 215
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that generates logical data based on a user’s specification of a
LDPS. The record 225 holds physical data that is an output of
the virtualization engine 210 that generates physical data
based on the logical data that the control application gener-
ates.

In the first stage 201, the control application writes three
new values d, e, fto the record 220 in this example. The values
d, e, f represent logical data (e.g., a logical flow entry) gen-
erated by the control engine 215. The second stage 202 shows
that the virtualization engine detects and reads the values d, e,
fto use as an input to generate physical data (e.g., a physical
flow entry). The third stage 203 illustrates that the virtualiza-
tion engine 210 generates values x, y, z based on the values d,
e, f and writes the values x, y, z into the relational database
data structure 240, specifically, into the record 225.

Next, the network controller 200 writes the values X, y, z
into the managed switching element 205. In some embodi-
ments, the network controller 200 performs a translation
operation that modifies the format of the record 225 before
writing the record into the switch. These operations are pic-
torially illustrated in FIG. 2 by showing the values x, y, z
translated into x',y',7', and the writing of these new values into
the managed switching element 205. In these embodiments,
the managed switching element communication interface
(not shown) of the network controller 200 would perform the
translation and send the translated record to the managed
switching element 205 using switch-access APIs (e.g., Open-
Flow).

The network controller 200 illustrated in FIG. 2 has a
single relational database data structure in some embodi-
ments. However, in other embodiments, the network control-
ler 200 has more than one relational database data structure to
store records written and read by the control and virtualiza-
tion engines. For instance, the control engine 215 and the
virtualization engine 210 may each have a separate relational
database data structure from which to read data and to which
to write data.

C. Pushing Flows to Edge Switching Elements

As mentioned above, the relational database data structure
in some embodiments stores data regarding each switching
element within the network infrastructure of a system, while
in other embodiments, the relational database data structure
only stores state information about switching elements at the
edge of a network infrastructure. FIGS. 3 and 4 illustrate an
example that differentiates the two differing approaches. Spe-
cifically, F1G. 3 illustrates the switch infrastructure of a multi-
user server hosting system. In this system, six switching
elements are employed to interconnect six machines of two
users A and B. Four of these switching elements 305-320 are
edge switching elements that have direct connections with the
machines 335-360 of the users A and B, while two of the
switching elements 325 and 330 are interior switching ele-
ments (i.e., non-edge switching elements) that interconnect
the edge switching elements and connect to each other. All the
switching elements illustrated in the Figures described above
and below may be software switching elements in some
embodiments, while in other embodiments the switching ele-
ments are mixture of software and physical switching ele-
ments. For instance, the edge switching elements 305-320 as
well as the non-edge switching elements 325-330 are soft-
ware switching elements in some embodiments. Also,
“machines” described in this application include virtual
machines and physical machines such as computing devices.

FIG. 4 illustrates a network controller 400 that manages the
edge switching elements 305-320. The network controller
400 is similar to the network controller 110 described above
by reference to FIG. 1. As shown in FIG. 4, the controller 400
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includes a control application 405 and a virtualization appli-
cation 410. The operating system for the controller 400 cre-
ates and maintains a relational database data structure (not
shown), which contains data records regarding only the four
edge switching elements 305-320. In addition, the applica-
tions 405 and 410 running on the operating system allow the
users A and B to modify their switching element configura-
tions for the edge switching elements that they use. The
network controller 400 then propagates these modifications,
if needed, to the edge switching elements. Specifically, in this
example, two edge switching elements 305 and 320 are used
by machines of both users A and B, while edge switching
element 310 is only used by the machine 345 of the user A and
edge switching element 315 is only used by the machine 350
of the user B. Accordingly, FIG. 4 illustrates the network
controller 400 modifying users A and B records in switching
elements 305 and 320, but only updating user A records in
switching element 310 and only user B records in switching
element 315.

The controller 400 of some embodiments only controls
edge switching elements (i.e., only maintains data in the
relational database data structure regarding edge switching
elements) for several reasons. Controlling edge switching
elements provides the controller with a sufficient mechanism
for maintaining isolation between machines (e.g., computing
devices), which is needed, as opposed to maintaining isola-
tion between all switching elements, which is not needed. The
interior switching elements forward data packets between
switching elements. The edge switching elements forward
data packets between machines and other network elements
(e.g., other switching elements). Thus, the controller can
maintain user isolation simply by controlling the edge switch-
ing element because the edge switching element is the last
switching element in line to forward packets to a machine.

Controlling only edge switching element also allows the
controller to be deployed independent of concerns about the
hardware vendor of the non-edge switching elements,
because deploying at the edge allows the edge switching
elements to treat the internal nodes of the network as simply
a collection of elements that moves packets without consid-
ering the hardware makeup of these internal nodes. Also,
controlling only edge switching elements makes distributing
switching logic computationally easier. Controlling only
edge switching elements also enables non-disruptive deploy-
ment of the controller because edge-switching solutions can
be added as top of rack switching elements without disrupting
the configuration of the non-edge switching elements.

In addition to controlling edge switching elements, the
network controller of some embodiments also utilizes and
controls non-edge switching elements that are inserted in the
switch network hierarchy to simplify and/or facilitate the
operation of the controlled edge switching elements. For
instance, in some embodiments, the controller requires the
switching elements that it controls to be interconnected in a
hierarchical switching architecture that has several edge
switching elements as the leaf nodes and one or more non-
edge switching elements as the non-leaf nodes. In some such
embodiments, each edge switching element connects to one
or more of the non-leaf switching elements, and uses such
non-leaf switching elements to facilitate its communication
with other edge switching elements. Examples of functions
that a non-leaf switching element of some embodiments may
provide to facilitate such communications between edge
switching elements in some embodiments include (1) for-
warding of a packet with an unknown destination address
(e.g., unknown MAC address) to the non-leaf switching ele-
ment so that this switching element can route this packet to
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the appropriate edge switch, (2) forwarding a multicast or
broadcast packet to the non-leaf switching element so that this
switching element can convert this packet to a series of uni-
cast packets to the desired destinations, (3) bridging remote
managed networks that are separated by one or more net-
works, and (4) bridging a managed network with an unman-
aged network.

Some embodiments employ one level of non-leaf (non-
edge) switching elements that connect to edge switching ele-
ments and to other non-leaf switching elements. Other
embodiments, on the other hand, employ multiple levels of
non-leaf switching elements, with each level of non-leaf
switching element after the first level serving as a mechanism
to facilitate communication between lower level non-leaf
switching elements and leaf switching elements. In some
embodiments, the non-leaf switching elements are software
switching elements that are implemented by storing the
switching tables in the memory of a standalone computer
instead of an off the shelf switch. In some embodiments, the
standalone computer may also be executing in some cases a
hypervisor and one or more virtual machines on top of that
hypervisor. Irrespective of the manner by which the leaf and
non-leaf switching elements are implemented, the relational
database data structure of the controller of some embodi-
ments stores switching state information regarding the leaf
and non-leaf switching elements.

The above discussion relates to the control of edge switch-
ing elements and non-edge switching elements by a network
controller of some embodiments. In some embodiments, edge
switching elements and non-edge switching elements (leaf
and non-leaf nodes) may be referred to as managed switching
elements. This is because these switching elements are man-
aged by the network controller (as opposed to unmanaged
switching elements, which are not managed by the network
controller, in the network) in order to implement LDP sets
through the managed switching elements.

Network controllers of some embodiments implement a
logical switching element across the managed switching ele-
ments based on the physical data and the logical data
described above. A logical switching element can be defined
to function any number of different ways that a switching
element might function. The network controllers implement
the defined logical switching element through control of the
managed switching elements. In some embodiments, the net-
work controllers implement multiple logical switching ele-
ments across the managed switching elements. This allows
multiple different logical switching elements to be imple-
mented across the managed switching elements without
regard to the network topology of the network.

The managed switching elements of some embodiments
can be configured to route network data based on different
routing criteria. In this manner, the flow of network data
through switching elements in a network can be controlled in
order to implement multiple logical switching elements
across the managed switching elements.

D. Logical Switching Elements and Physical Switching
Elements

FIG. 5 illustrates an example of multiple logical switching
elements implemented across a set of switching elements. In
particular, FIG. 5 conceptually illustrates logical switching
elements 580 and 590 implemented across managed switch-
ing elements 510-530. As shown in FIG. 5, a network 500
includes managed switching elements 510-530 and machines
540-565. As indicated in this figure, the machines 540, 550,
and 560 belong to user A and the machines 545, 555, and 565
belong to user B.
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The managed switching elements 510-530 of some
embodiments route network data (e.g., packets, frames, etc.)
between network elements in the network that are coupled to
the managed switching elements 510-530. As shown, the
managed switching element 510 routes network data between
the machines 540 and 545 and the switching element 520.
Similarly, the switching element 520 routes network data
between the machine 550 and the managed switching ele-
ments 510 and 530, and the switching element 530 routes
network data between the machines 555-565 and the switch-
ing element 520.

Moreover, each of the managed switching elements 510-
530 routes network data based on the switch’s forwarding
logic, which in some embodiments are in the form of tables.
In some embodiments, a forwarding table determines where
to route network data (e.g., a port on the switch) according to
routing criteria. For instance, a forwarding table of a layer 2
switching element may determine where to route network
data based on MAC addresses (e.g., source MAC address
and/or destination MAC address). As another example, a
forwarding table of a layer 3 switching element may deter-
mine where to route network data based on IP addresses (e.g.,
source IP address and/or destination IP address). Many other
types of routing criteria are possible.

As shown in FIG. 5, the forwarding table in each of the
managed switching elements 510-530 includes several
records. In some embodiments, each of the records specifies
operations for routing network data based on routing criteria.
The records may be referred to as flow entries in some
embodiments as the records control the “flow” of data
through the managed switching elements 510-530.

FIG. 5 also illustrates conceptual representations of each
user’s logical network. As shown, the logical network 580 of
user A includes a logical switching element 585 to which user
A’s machines 540, 550, and 560 are coupled. User B’s logical
network 590 includes a logical switching element 595 to
which user B’s machines 545, 555, and 565 are coupled. As
such, from the perspective of user A, user A has a switching
element to which only user A’s machines are coupled, and,
from the perspective of user B, user B has a switching element
to which only user B’s machines are coupled. In other words,
to each user, the user has its own network that includes only
the user’s machines.

The following will describe the conceptual flow entries for
implementing the flow of network data originating from the
machine 540 and destined for the machine 550 and originat-
ing from the machine 540 and destined for the machine 560.
First, the flow entries for routing network data originating
from the machine 540 and destined for the machine 550 will
be described followed by the flow entries for routing network
data originating from the machine 540 and destined for the
machine 560.

The flow entry “A1l to A2” in the managed switching ele-
ment 510°s forwarding table instructs the managed switching
element 510 to route network data that originates from
machine 510 and is destined for the machine 550 to the
switching element 520. The flow entry “Al to A2” in the
forwarding table of the switching element 520 instructs the
switching element 520 to route network data that originates
from machine 510 and is destined for the machine 550 to the
machine 550. Therefore, when the machine 540 sends net-
work data that is destined for the machine 550, the managed
switching elements 510 and 520 route the network data along
datapath 570 based on the corresponding records in the
switching elements’ forwarding tables.

Furthermore, the flow entry “Al to A3” in the managed
switching element 510’s forwarding table instructs the man-
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aged switching element 510 to route network data that origi-
nates from machine 540 and is destined for the machine 560
to the switching element 520. The flow entry “A1to A3” in the
forwarding table of the switching element 520 instructs the
switching element 520 to route network data that originates
from machine 540 and is destined for the machine 560 to the
switching element 530. The flow entry “Al to A3” in the
forwarding table of the switching element 530 instructs the
switching element 530 to route network data that originates
from machine 540 and is destined for the machine 560 to the
machine 560. Thus, when the machine 540 sends network
datathat is destined for the machine 560, the managed switch-
ing elements 510-530 route the network data along datapaths
570 and 575 based on the corresponding records in the
switching elements’ forwarding tables.

While conceptual flow entries for routing network data
originating from the machine 540 and destined for the
machine 550 and originating from the machine 540 and des-
tined for the machine 560 are described above, similar flow
entries would be included in the forwarding tables of the
managed switching elements 510-530 for routing network
data between other machines in user A’s logical network 580.
Moreover, similar flow entries would be included in the for-
warding tables of the managed switching elements 510-530
for routing network data between the machines in user B’s
logical network 590.

The conceptual flow entries shown in FIG. 5 includes both
the source and destination information for the managed
switching elements to figure out the next-hop switching ele-
ments to which to send the packets. However, the source
information does not have to be in the flow entries as the
managed switching elements of some embodiments can fig-
ures out the next-hope switching elements using the destina-
tion information (e.g., a context identifier, a destination
address, etc.) only.

In some embodiments, tunnels provided by tunneling pro-
tocols (e.g., control and provisioning of wireless access
points (CAPWAP), generic route encapsulation (GRE), GRE
Internet Protocol Security (IPsec), etc.) may be used to facili-
tate the implementation of the logical switching elements 585
and 595 across the managed switching elements 510-530. By
tunneling, a packet is transmitted through the switches and
routers as a payload of another packet. That is, a tunneled
packet does not have to expose its addresses (e.g., source and
destination MAC addresses) as the packet is forwarded based
on the addresses included in the header of the outer packet
that is encapsulating the tunneled packet. Tunneling, there-
fore, allows separation of logical address space from the
physical address space as a tunneled packet can have
addresses meaningful in the logical address space while the
outer packet is forwarded/routed based on the addresses in the
physical address space. In this manner, the tunnels may be
viewed as the “logical wires” that connect managed switching
elements in the network in order to implement the logical
switches 585 and 595.

In some embodiments, unidirectional tunnels are used. For
instance, a unidirectional tunnel between the managed
switching element 510 and the switching element 520 may be
established, through which network data originating from the
machine 540 and destined for the machine 550 is transmitted.
Similarly, a unidirectional tunnel between the managed
switching element 510 and the switching element 530 may be
established, through which network data originating from the
machine 540 and destined for the machine 560 is transmitted.
In some embodiments, a unidirectional tunnel is established
for each direction of network data flow between two
machines in the network.
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Alternatively, or in conjunction with unidirectional tun-
nels, bidirectional tunnels can be used in some embodiments.
For instance, in some of these embodiments, only one bidi-
rectional tunnel is established between two switching ele-
ments. Referring to FIG. 5 as an example, a tunnel would be
established between the managed switching elements 510
and 520, a tunnel would be established between the managed
switching elements 520 and 530, and a tunnel would be
established between the managed switching elements 510
and 530.

Configuring the switching elements in the various ways
described above to implement multiple logical switching ele-
ments across a set of switching elements allows multiple
users, from the perspective of each user, to each have a sepa-
rate network and/or switching element while the users are in
fact sharing some or all of the same set of switching elements
and/or connections between the set of switching elements
(e.g., tunnels, physical wires).

Although FIG. 5 illustrates implementation of logical
switching elements in a set of managed switching elements, it
is possible to implement a more complex logical network
(e.g., that includes several logical L3 routers) by configuring
the forwarding tables of the managed switching elements.
FIG. 6 conceptually illustrates an example of a more complex
logical network. FIG. 6 illustrates an network architecture
600 of some embodiments which implements a logical router
625 and logical switching elements 620 and 630. Specifically,
the network architecture 600 represents a physical network
that effectuate logical networks whose data packets are
switched and/or routed by the logical router 625 and the
logical switching elements 620 and 630. The figure illustrates
in the top half of the figure the logical router 625 and the
logical switching elements 620 and 630. This figure illus-
trates, in the bottom half of the figure, the managed switching
elements 655 and 660. The figure illustrates machines 1-4 in
both the top and the bottom of the figure.

In this example, the logical switching element 620 for-
wards data packets between the logical router 625, machine 1,
and machine 2. The logical switching element 630 forwards
data packets between the logical router 625, machine 3, and
machine 4. As mentioned above, the logical router 625 routes
data packets between the logical switching elements 620 and
630 and other logical routers and switches (not shown). The
logical switching elements 620 and 630 and the logical router
625 are logically coupled through logical ports (not shown)
and exchange data packets through the logical ports. These
logical ports are mapped or attached to physical ports of the
managed switching elements 655 and 660.

In some embodiments, a logical router is implemented in
each managed switching element in the managed network.
When the managed switching element receives a packet from
a machine that is coupled to the managed switching element,
the managed switching element performs the logical routing.
In other words, a managed switching element that is a first-
hop switching element with respect to a packet, performs the
logical routing in these embodiments.

In this example, the managed switching elements 655 and
660 are software switching elements running in hosts 665 and
670, respectively. The managed switching elements 655 and
660 have flow entries which implement the logical switching
elements 620 and 630 to forward and route the packets the
managed switching element 655 and 660 receive from
machines 1-4. The flow entries also implement the logical
router 625. Using these flow entries, the managed switching
elements 655 and 660 can forward and route packets between
network elements in the network that are coupled to the
managed switching elements 655 and 660.
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As shown, the managed switching elements 655 and 660
each have three ports (e.g., VIFs) through which to exchange
data packets with the network elements that are coupled to the
managed switching elements 655 and 660. In some cases, the
data packets in these embodiments will travel through a tun-
nel that is established between the managed switching ele-
ments 655 and 660 (e.g., the tunnel that terminates at port 3 of
the managed switching element 655 and port 6 of the man-
aged switching element 660). This tunnel makes it possible to
separate addresses in logical space and the addresses in physi-
cal space. That is, information about the logical ports (e.g.,
association between the machines MAC addresses and logi-
cal ports of logical switching elements, association between
network addresses and logical ports of the logical router, etc.)
can be encapsulated by the header of the outer packet that
establishes the tunnel. Also, because the information is
encapsulated by the outer header, the information will not be
exposed to the network elements such as other switches and
routers (not shown) in the network 699.

In this example, each of the hosts 665 and 670 includes a
managed switching element and several machines as shown.
The machines 1-4 are virtual machines that are each assigned
a set of network addresses (e.g., a MAC address for .2, an IP
address for network L3, etc.) and can send and receive net-
work data to and from other network elements. The machines
are managed by hypervisors (not shown) running on the hosts
665 and 670. The machines 1 and 2 are associated with logical
ports 1 and 2, respectively, of the same logical switch 620.
However, the machine 1 is associated with the port 4 of the
managed switching element 655 and the machine 2 is asso-
ciated with the port 7 of the managed switching element 660.
The logical ports 1 and 2 are therefore mapped to the ports 4
and 7, respectively, but this mapping does not have to be
exposed to any of the network elements (not shown) in the
network. This is because the packets that include this map-
ping information will be exchanged between the machines 1
and 2 over the tunnel based on the outer header of the outer
packets that carry the packets with mapping information as
payloads.

E. Layers of Controller Instance

FIG. 7 further elaborates on the propagation of the instruc-
tions to control a managed switching element through the
various processing layers of the controller instances of some
embodiments of the invention. This figure illustrates a control
data pipeline 700 that translates and propagates control plane
data through four processing layers of the same or different
controller instances to a managed switching element 725.
These four layers are the input translation layer 705, the
control layer 710, the virtualization layer 715, and the cus-
tomization layer 720.

In some embodiments, these four layers are in the same
controller instance. However, other arrangements of these
layers exist in other embodiments. For instance, in other
embodiments, only the control and virtualization layers 710
and 715 are in the same controller instance, but the function-
ality to propagate the customized physical control plane data
reside in a customization layer of another controller instance
(e.g., a chassis controller, not shown). In these other embodi-
ments, the universal control plane data is transferred from the
relational database data structure (not shown) of one control-
ler instance to the relational database data structure of another
controller instance, before this other controller instance gen-
erates and pushes the customized physical control plane data
to the managed switching element. The former controller
instance may be a logical controller that generates universal
control plane data and the latter controller instance may be a
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physical controller or a chassis controller that customizes the
universal control plane data in to customized physical control
plane data.

As shown in FIG. 7, the input translation layer 705 in some
embodiments has a logical control plane 730 that can be used
to express the output of this layer. In some embodiments, an
application (e.g., web-based application, not shown) is pro-
vided to the users for them to supply inputs specifying the
LDP sets. This application sends the inputs in the form of API
calls to the input translation layer 705, which translates them
into logical control plane data in a format that can be pro-
cessed by the control layer 710. For instance, the inputs are
translated into a set of input events that can be fed into nlLog
table mapping engine of the control layer. The nlLog table
mapping engine and its operation will be described further
below.

The control layer 710 in some embodiments has the logical
control plane 730 and the logical forwarding plane 735 that
can be used to express the input and output to this layer. The
logical control plane includes a collection of higher-level
constructs that allow the control layer and its users to specify
one or more LDP sets within the logical control plane for one
or more users. The logical forwarding plane 735 represents
the LDP sets of the users in a format that can be processed by
the virtualization layer 715. In this manner, the two logical
planes 730 and 735 are virtualization space analogs of the
control and forwarding planes 755 and 760 that typically can
be found in a typical managed switching element 725, as
shown in FIG. 7.

In some embodiments, the control layer 710 defines and
exposes the logical control plane constructs with which the
layer itself or users of the layer define different LDP sets
within the logical control plane. For instance, in some
embodiments, the logical control plane data 730 includes
logical ACL data, etc. Some of this data (e.g., logical ACL.
data) can be specified by the user, while other such data (e.g.,
the logical L2 or L3 records) are generated by the control
layer and may not be specified by the user. In some embodi-
ments, the control layer 710 generates and/or specifies such
data in response to certain changes to the relational database
data structure (which indicate changes to the managed
switching elements and the managed datapaths) that the con-
trol layer 710 detects.

In some embodiments, the logical control plane data (i.e.,
the LDP sets data that is expressed in terms of the control
plane constructs) can be initially specified without consider-
ation of current operational data from the managed switching
elements and without consideration of the manner by which
this control plane data will be translated to physical control
plane data. For instance, the logical control plane data might
specify control data for one logical switch that connects five
computers, even though this control plane data might later be
translated to physical control data for three managed switch-
ing elements that implement the desired switching between
the five computers.

The control layer includes a set of modules for converting
any LDPS within the logical control plane to a LDPS in the
logical forwarding plane 735. In some embodiments, the
control layer 710 uses the nl.og table mapping engine to
perform this conversion. The control layer’s use of the nlLog
table mapping engine to perform this conversion is further
described below. The control layer also includes a set of
modules for pushing the LDP sets from the logical forwarding
plane 735 of the control layer 710 to a logical forwarding
plane 740 of the virtualization layer 715.

The logical forwarding plane 740 includes one or more
LDP sets of one or more users. The logical forwarding plane
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740 in some embodiments includes logical forwarding data
for one or more LDP sets of one or more users. Some of this
data is pushed to the logical forwarding plane 740 by the
control layer, while other such data are pushed to the logical
forwarding plane by the virtualization layer detecting events
in the relational database data structure as further described
below for some embodiments.

In addition to the logical forwarding plane 740, the virtu-
alization layer 715 includes a universal physical control plane
745. The universal physical control plane 745 includes a
universal physical control plane data for the LDP sets. The
virtualization layer includes a set of modules (not shown) for
converting the LDP sets within the logical forwarding plane
740 to universal physical control plane data in the universal
physical control plane 745. In some embodiments, the virtu-
alization layer 715 uses the nl.og table mapping engine to
perform this conversion. The virtualization layer also
includes a set of modules (not shown) for pushing the univer-
sal physical control plane data from the universal physical
control plane 745 of the virtualization layer 715 into the
relational database data structure of the customization layer
720.

In some embodiments, the universal physical control plane
data that is sent to the customization layer 715 allows man-
aged switching element 725 to process data packets accord-
ing to the LDP sets specified by the control layer 710. How-
ever, in contrast to the customized physical control plane data,
the universal physical control plane data is not a complete
implementation of the logical data specified by the control
layer because the universal physical control plane data in
some embodiments does not express the differences in the
managed switching elements and/or location-specific infor-
mation of the managed switching elements.

The universal physical control plane data has to be trans-
lated into the customized physical control plane data for each
managed switching element in order to completely imple-
ment the LDP sets at the managed switching elements. For
instance, when the LDP sets specifies a tunnel that spans
several managed switching elements, the universal physical
control plane data expresses one end of the tunnel using a
particular network address (e.g., IP address) of the managed
switching element representing that end. However, each of
the other managed switching elements over which the tunnel
spans uses a port number that is local to the managed switch-
ing element to refer to the end managed switching element
having the particular network address. That is, the particular
network address has to be translated to the local port number
for each of the managed switching elements in order to com-
pletely implement the LDP sets specifying the tunnel at the
managed switching elements.

The universal physical control plane data as intermediate
data to be translated into customized physical control plane
data enables the control system of some embodiments to
scale, assuming that the customization layer 720 is running in
another controller instance. This is because the virtualization
layer 715 does not have to convert the logical forwarding
plane data specifying the LDP sets to customized physical
control plane data for each of the managed switching ele-
ments that implements the LDP sets. Instead, the virtualiza-
tion layer 715 converts the logical forwarding plane data to
universal physical control data once for all the managed
switching elements that implement the LDP sets. In this man-
ner, the virtualization application saves computational
resources that it would otherwise have to spend to perform
conversion of the LDP sets to customized physical control
plane data for as many times as the number of the managed
switching elements that implement the LDP sets.
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The customization layer 720 includes the universal physi-
cal control plane 745 and a customized physical control plane
750 that can be used to express the input and output to this
layer. The customization layer includes a set of modules (not
shown) for converting the universal physical control plane
data in the universal physical control plane 745 into custom-
ized physical control plane data in the customized physical
control plane 750. In some embodiments, the customization
layer 715 uses the nlLog table mapping engine to perform this
conversion. The customization layer also includes a set of
modules (not shown) for pushing the customized physical
control plane data from the customized physical control plane
750 of the customization layer 715 into the managed switch-
ing elements 725.

As mentioned above, customized physical control plane
data that is pushed to each managed switching element is
specific to the managed switching element. The customized
physical control plane data allows the managed switching
element to perform physical switching operations in both the
physical and logical data processing domains. In some
embodiments, the customization layer 720 runs in a separate
controller instance for each of the managed switching ele-
ments 725.

In some embodiments, the customization layer 720 does
not run in a controller instance. The customization layer 715
in these embodiments reside in the managed switching ele-
ments 725. Therefore, in these embodiments, the virtualiza-
tion layer 715 sends the universal physical control plane data
to the managed switching elements. Each managed switching
element will customize the universal physical control plane
data into customized physical control plane data specific to
the managed switching element. In some of these embodi-
ments, a controller daemon will be running in each managed
switching element and will perform the conversion of the
universal data into the customized data for the managed
switching element. A controller daemon will be described
further below.

FIG. 8 illustrates a multi-instance, distributed network
control system 800 of some embodiments. This distributed
system controls multiple switching elements 890 with three
controller instances 805, 810, and 815. In some embodi-
ments, the distributed system 800 allows different controller
instances to control the operations of the same switching
element or of different switching elements. As shown in FIG.
8, each instance includes an input module 820, a control
module 825, records (a relational database data structure)
835, a secondary storage structure (e.g., a PTD) 840, an
inter-instance communication interface 845, a managed
switching element communication interface 850.

The input module 820 of a controller instance is similar to
the input translation layer 705 described above by reference
to FIG. 7 in that the input module takes inputs from users and
translates the inputs into logical control plane data that the
control module 825 would understand and process. As men-
tioned above, the inputs are in the form of API calls in some
embodiments. The input module 820 sends the logical control
plane data to the control module 825.

The control module 825 of a controller instance is similar
to the control layer 710 in that the control module 825 con-
verts the logical control plane data into logical forwarding
plane data and pushes the logical forwarding plane data into
the virtualization module 830. In addition, the control module
825 determines whether the received logical control plane
data is of the LDPS that the controller instance is managing.
If the controller instance is the master of the LDPS for the
logical control plane data, the virtualization module of the
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controller instance will further process the data. Otherwise,
the control module stores the logical control plane data in the
secondary storage 840.

The virtualization module 830 of a controller instance is
similar to the virtualization layer 715 in that the virtualization
module 830 converts the logical forwarding plane data into
the universal physical control plane data. The virtualization
module 830 of some embodiments then sends the universal
physical control plane data to another controller instance
through inter-instance communication interface 845 or to the
managed switching elements through the managed switching
element communication interface 850.

The virtualization module 830 sends the universal physical
control plane data to another instance when the other control-
ler instance is a physical controller that is responsible for
managing the managed switching elements that implement
the LDPS. This is the case when the controller instance, on
which the virtualization module 830 has generated the uni-
versal control plane data, is just a logical controller respon-
sible for a particular LDPS but is not a physical controller or
a chassis controller responsible for the managed switching
elements that implement the LDPS.

The virtualization module 830 sends the universal physical
control plane data to the managed switching elements when
the managed switching elements are configured to convert the
universal physical control plane data into the customized
physical control plane data specific to the managed switching
elements. In this case, the controller instance would not have
a customization layer or module that would perform the con-
version from the universal physical control plane data into the
customized physical control plane data.

The records 835, in some embodiments, is a set of records
stored in the relational database data structure of a controller
instance. In some embodiments, some or all of the input
module, the control module, and the virtualization modules
use, update, and manage the records stored in the relational
database data structure. That is, the inputs and/or outputs of
these modules are stored in the relational database data struc-
ture.

In some embodiments, the system 800 maintains the same
switching element data records in the relational database data
structure of each instance, while in other embodiments, the
system 800 allows the relational database data structures of
different instances to store different sets of switching element
data records based on the LDPS(s) that each controller
instance is managing.

The PTD 840 is a secondary storage structure for storing
user-specified network configuration data (e.g., logical con-
trol plane data converted from the inputs in the form of API
calls). In some embodiments, the PTD of each controller
instance stores the configuration data for all users using the
system 800. The controller instance that receives the user
input propagates the configuration data to the PTDs of other
controller instances such that every PTD of every controller
instance has all the configuration data for all users in these
embodiments. In other embodiments, however, the PTD of a
controller instance only stores the configuration data for a
particular LDPS that the controller instance is managing.

By allowing different controller instances to store the same
or overlapping configuration data, and/or secondary storage
structure records, the system improves its overall resiliency
by guarding against the loss of data due to the failure of any
network controller (or failure of the relational database data
structure instance and/or the secondary storage structure
instance). For instance, replicating the PTD across controller
instances enables a failed controller instance to quickly
reload its PTD from another instance.

25

40

45

50

55

30

The inter-instance communication interface 845 is similar
to an exporter of a controller instance described above in that
this interface establishes a communication channel (e.g., an
RPC channel) with another controller instance. As shown, the
inter-instance communication interfaces facilitate the data
exchange between different controller instances 805-815.

The managed switching element communication interface,
as mentioned above, facilitates the communication between a
controller instance and a managed switching element. In
some embodiments, the managed switching element commu-
nication interface converts the universal physical control
plane data generated by the virtualization module 830 into the
customized physical control plane data specific to each man-
aged switching element that is not capable of converting the
universal data into the customized data.

For some or all of the communications between the distrib-
uted controller instances, the system 800 uses the coordina-
tion managers (CMs) 855. The CM 855 in each instance
allows the instance to coordinate certain activities with the
other instances. Different embodiments use the CM to coor-
dinate the different sets of activities between the instances.
Examples of such activities include writing to the relational
database data structure, writing to the PTD, controlling the
switching elements, facilitating inter-controller communica-
tion related to fault tolerance of controller instances, etc.
Also, CMs are used to find the masters of LDPS and the
masters of managed switching elements.

As mentioned above, different controller instances of the
system 800 can control the operations of the same switching
elements or of different switching elements. By distributing
the control of these operations over several instances, the
system can more easily scale up to handle additional switch-
ing elements. Specifically, the system can distribute the man-
agement of different switching elements to different control-
ler instances in order to enjoy the benefit of efficiencies that
can be realized by using multiple controller instances. In such
a distributed system, each controller instance can have a
reduced number of switching elements under management,
thereby reducing the number of computations each controller
needs to perform to distribute flow entries across the switch-
ing elements. In other embodiments, the use of multiple con-
troller instances enables the creation of a scale-out network
management system. The computation of how best to distrib-
ute network flow tables in large networks is a CPU intensive
task. By splitting the processing over controller instances, the
system 800 can use a set of more numerous but less powerful
computer systems to create a scale-out network management
system capable of handling large networks.

To distribute the workload and to avoid conflicting opera-
tions from different controller instances, the system 800 of
some embodiments designates one controller instance (e.g.,
805) within the system 800 as the master of a LDPS and/or
any given managed switching element (i.e., as a logical con-
troller or a physical controller). In some embodiments, each
master controller instance stores in its relational database data
structure only the data related to the managed switching ele-
ments which the master is handling.

In some embodiments, as noted above, the CMs facilitate
inter-controller communication related to fault tolerance of
controller instances. For instance, the CMs implement the
inter-controller communication through the secondary stor-
age described above. A controller instance in the control
system may fail due to any number of reasons. (e.g., hardware
failure, software failure, network failure, etc.). Different
embodiments may use different techniques for determining
whether a controller instance has failed. In some embodi-
ments, a consensus protocol is used to determine whether a
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controller instance in the control system has failed. While
some of these embodiments may use Apache Zookeeper to
implement the consensus protocols, other embodiments may
implement the consensus protocol in other ways.

Some embodiments of the CM 855 may utilize defined
timeouts to determine whether a controller instance has
failed. For instance, if a CM of a controller instance does not
respond to a communication (e.g., sent from another CM of
another controller instance in the control system) within an
amount of time (i.e., a defined timeout amount), the non-
responsive controller instance is determined to have failed.
Other techniques may be utilized to determine whether a
controller instance has failed in other embodiments.

When a master controller instance fails, a new master for
the LDP sets and the switching elements needs to be deter-
mined. Some embodiments of the CM 855 make such deter-
mination by performing a master election process that elects
a master controller instance (e.g., for partitioning manage-
ment of LDP sets and/or partitioning management of switch-
ing elements). The CM 855 of some embodiments may per-
form a master election process for electing a new master
controller instance for both the LDP sets and the switching
elements of which the failed controller instance was a master.
However, the CM 855 of other embodiments may perform (1)
a master election process for electing a new master controller
instance for the LDP sets of which the failed controller
instance was a master and (2) another master election process
for electing a new master controller instance for the switching
elements of which the failed controller instance was a master.
In these cases, the CM 855 may determine two different
controller instances as new controller instances: one for the
LDP sets of which the failed controller instance was a master
and another for the switching elements of which the failed
controller instance was a master.

Alternatively or conjunctively, the controllers in the cluster
of some embodiments run a consensus algorithm to deter-
mine a leader controller as mentioned above. The leader
controller partitions the tasks for which each controller
instance in the cluster is responsible by assigning a master
controller for a particular work item, and in some cases a
hot-standby controller to take over in case the master control-
ler fails.

In some embodiments, the master election process is fur-
ther for partitioning management of LDP sets and/or man-
agement of switching elements when a controller instance is
added to the control system. In particular, some embodiments
of'the CM 855 perform the master election process when the
control system 800 detects a change in membership of the
controller instances in the control system 800. For instance,
the CM 855 may perform the master election process to
redistribute a portion of the management of the LDP sets
and/or the management of the switching elements from the
existing controller instances to the new controller instance
when the control system 800 detects that a new network
controller has been added to the control system 800. How-
ever, in other embodiments, redistribution of a portion of the
management of the LDP sets and/or the management of the
switching elements from the existing controller instances to
the new controller instance does not occur when the control
system 800 detects that a new network controller has been
added to the control system 800. Instead, the control system
800 in these embodiments assigns unassigned LDP sets and/
or switching elements (e.g., new LDP sets and/or switching
elements or LDP sets and/or switching elements from a failed
network controller) to the new controller instance when the
control system 800 detects the unassigned LDP sets and/or
switching elements.

20

35

40

45

55

32

F. Partitioning Management of LDP Sets and Managed
Switching Flements

FIG. 9 illustrates an example of specifying a master con-
troller instance for a switching element (i.e., a physical con-
troller) in a distributed system 900 that is similar to the system
800 of FIG. 8. In this example, two controllers 905 and 910
control three switching elements S1, S2 and S3, for two
different users A and B. Through two control applications 915
and 920, the two users specify two different LDP sets 925 and
930, which are translated into numerous records that are
identically stored in two relational database data structures
955 and 960 of the two controller instances 905 and 910 by
virtualization applications 945 and 950 of the controllers.

In the example illustrated in FIG. 9, both control applica-
tions 915 and 920 of both controllers 905 and 910 can modify
records of the switching element S2 for both users A and B,
but only controller 905 is the master of this switching ele-
ment. This example illustrates two different scenarios. The
first scenario involves the controller 905 updating the record
S251 in switching element S2 for the user B. The second
scenario involves the controller 905 updating the records
S2a1 in switching element S2 after the control application
920 updates a record S2a1 for switching element S2 and user
A inthe relational database data structure 960. In the example
illustrated in FIG. 9, this update is routed from relational
database data structure 960 of the controller 910 to the rela-
tional database data structure 955 of the controller 905, and
subsequently routed to switching element S2.

Different embodiments use different techniques to propa-
gate changes to the relational database data structure 960 of
controller instance 910 to the relational database data struc-
ture 955 of the controller instance 905. For instance, to propa-
gate this update, the virtualization application 950 of the
controller 910 in some embodiments sends a set of records
directly to the relational database data structure 955 (by using
inter-controller communication modules or exporter/im-
porter). In response, the virtualization application 945 would
send the changes to the relational database data structure 955
to the switching element S2.

Instead of propagating the relational database data struc-
ture changes to the relational database data structure of
another controller instance, the system 900 of some embodi-
ments uses other techniques to change the record S2a1 in the
switching element S2 in response to the request from control
application 920. For instance, the distributed control system
of some embodiments uses the secondary storage structures
(e.g., a PTD) as communication channels between the differ-
ent controller instances. In some embodiments, the PTDs are
replicated across all instances, and some or all of the rela-
tional database data structure changes are pushed from one
controller instance to another through the PTD storage layer.
Accordingly, in the example illustrated in FIG. 9, the change
to the relational database data structure 960 could be repli-
cated to the PTD of'the controller 910, and from there it could
be replicated in the PTD of the controller 905 and the rela-
tional database data structure 955.

Other variations to the sequence of operations shown in
FIG. 9 could exist because some embodiments designate one
controller instance as a master of a LDPS, in addition to
designating a controller instance as a master of a switching
element. In some embodiments, different controller instances
can be masters of a switching element and a corresponding
record for that switching element in the relational database
data structure, while other embodiments require the control-
ler instance to be master of the switching element and all
records for that switching element in the relational database
data structure.



US 9,231,882 B2

33

In the embodiments where the system 900 allows for the
designation of masters for switching elements and relational
database data structure records, the example illustrated in
FIG. 9 illustrates a case where the controller instance 910 is
the master of the relational database data structure record
S2al, while the controller instance 905 is the master for the
switching element S2. If a controller instance other than the
controller instance 905 and 910 was the master of the rela-
tional database data structure record S2al, then the request
for the relational database data structure record modification
from the control application 920 would have had to be propa-
gated to this other controller instance. This other controller
instance would then modify the relational database data struc-
ture record and this modification would then cause the rela-
tional database data structure 955 and the switching element
S2 to update their records through any number of mechanisms
that would propagate this modification to the controller
instances 905.

In other embodiments, the controller instance 905 might be
the master of the relational database data structure record
S2al, or the controller instance 905 might be the master of
switching element S2 and all the records of its relational
database data structure. In these embodiments, the request for
the relational database data structure record modification
from the control application 920 would have to be propagated
to the controller instance 905, which would then modify the
records in the relational database data structure 955 and the
switching element S2.

As mentioned above, different embodiments employ dif-
ferent techniques to facilitate communication between difter-
ent controller instances. In addition, different embodiments
implement the controller instances differently. For instance,
in some embodiments, the stack of the control application(s)
(e.g., 825 or 915 in FIGS. 8 and 9) and the virtualization
application (e.g., 830 or 945) is installed and runs on a single
computer. Also, in some embodiments, multiple controller
instances can be installed and run in parallel on a single
computer. In some embodiments, a controller instance can
also have its stack of components divided amongst several
computers. For example, within one instance, the control
application (e.g., 825 or 915) can be on a first physical or
virtual computer and the virtualization application (e.g., 830
or 945) can be on a second physical or virtual computer.

FIG. 10 illustrates an example operation of several control-
ler instances that function as a controller for distributing
inputs, a master controller of a LDPS, and a master controller
of'a managed switching element. In some embodiments, not
every controller instance includes a full stack of different
modules and interfaces as described above by reference to
FIG. 8. Or, not every controller instance performs every func-
tion of the full stack. For instance, none of the controller
instances 1005, 1010, and 1015 illustrated in FIG. 10 has a
full stack of the modules and interfaces.

The controller instance 1005 in this example is a controller
instance for distributing inputs. That is, the controller
instance 1005 of some embodiments takes the inputs from the
users in the form of API calls. Through the API calls, the users
can specify requests for configuring a particular LDPS (i.e.,
configuring a logical switching element or a logical router to
be implemented in a set of managed switching elements). The
input module 1020 of the controller instance 1005 receives
these API calls and translates them into the form (e.g., data
tuples or records) that can be stored in a PTD 1025 and sent to
another controller instance in some embodiments.

The controller instance 1005 in this example then sends
these records to another controller instance that is responsible
for managing the records of the particular LDPS. In this
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example, the controller instance 1010 is responsible for the
records of the LDPS. The controller instance 1010 receives
the records from the PTD 1025 of the controller instance 1005
and stores the records in the PTD 1045, which is a secondary
storage structure of the controller instance 1010. In some
embodiments, PTDs of different controller instances can
directly exchange information each other and do not have to
rely on inter-controller interfaces.

The control application 1010 then detects the addition of
these records to the PTD and processes the records to generate
or modify other records in the relational database data struc-
ture 1042. In particular, the control application generates
logical forwarding plane data. The virtualization application
in turn detects the modification and/or addition of these
records in the relational database data structure and modifies
and/or generates other records in the relational database data
structure. These records represent the universal physical con-
trol plane data in this example. These records then get sent to
another controller instance that is managing at least one
switching element that implements the particular LDPS,
through the inter-controller interface 1050 of the controller
instance 1010.

The controller instance 1015 in this example is a controller
instance that is managing the switching element 1055. The
switching element implements at least part of the particular
LDPS. The controller instance 1015 receives the records rep-
resenting the universal physical control plane data from the
controller instance 1010 through the inter-controller interface
1065. In some embodiments, the controller instance 1015
would have a control application and a virtualization appli-
cation to perform a conversion of the universal physical con-
trol plane data to the customized physical control plane data.
However, in this example, the controller instance 1015 just
identifies a set of managed switching elements to which to
send the universal physical control plane data. In this manner,
the controller instance 1015 functions as an aggregation point
to gather data to send to the managed switching elements that
this controller is responsible for managing. In this example,
the managed switching element 1055 is one of the switching
elements managed by the controller instance 1015.

In some embodiments, the controller instances in a multi-
instance, distributed network control system (such as the
system 800 described above by reference to FIG. 8) partitions
the LDP sets. That is, the responsibility for managing [L.DP
sets is distributed over the controller instances. For instance,
a single controller instance of some embodiments is respon-
sible for managing one or more LDP sets but not all of the
LDP sets managed by the system. In these embodiments, a
controller instance that is responsible for managing a LDPS
(i.e., the master of the LDPS) maintains different portions of
the records for all LDP sets in the system in different storage
structures of the controller instance. FIG. 11 illustrates an
example of maintaining the records in different storage struc-
tures. This figure illustrates two controller instances of a
multi-instance, distributed network control system 1100. One
of'the ordinary skill in the art would recognize that there could
be many more controller instances in the system 1100 for
managing many other LDP sets. This figure also illustrates a
global view 1115 of'the state of the network for two LDP sets
that the system 1100 is managing in this example.

The controller instance 1105 is a master of one of the two
LDP sets. The view 1120 represents the state of the network
for this LDPS only. The controller instance 1105 maintains
the data for this view 1120 in the relational datapath data
structure 1140. On the other hand, the controller instance
1110 is a master of the other LDPS that the system 1100 is
managing. The controller instance 1110 maintains the data
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for the view 1125, which represents the state of the network
for this other LDPS only. Because a controller instance that is
a master of a LDPS may not need the global view of the state
of the network for all LDP sets, the master of the LDPS does
not maintain the data for the global view.

In some embodiments, however, each controller instance in
the system 1100 maintains the data for the global view of the
state of the network for all LDPS that the system is managing
in the secondary storage structure (e.g., a PTD) of the con-
troller instance. As mentioned above, keeping the data for the
global data in each controller instance improves overall resil-
iency by guarding against the loss of data due to the failure of
any network controller (or failure of the relational database
data structure instance and/or the secondary storage structure
instance). Also, the secondary storage structures in these
embodiments serve as a communication medium among the
controller instances. In particular, when a controller instance
that is not a master of a particular LDPS receives updates for
this particular LDPS (e.g., from a user), the controller
instance first stores the updates in the PTD and propagates the
updates to the controller instance that is the master of this
particular LDPS. As described above, these updates will be
detected by the control application of the master of the LDPS
and processed.

G. Input Translation Layer

FIG. 12 conceptually illustrates software architecture for
an input translation application 1200. The input translation
application of some embodiments functions as the input
translation layer 705 described above by reference to FIG. 7.
In particular, the input translation application receives inputs
from a user interface application that allows the user to enter
input values, translates inputs into requests, and dispatches
the requests to one or more controller instances to process the
requests and send back responses. In some embodiments, the
input translation application runs in the same controller
instance in which a control application runs, while in other
embodiments the input translation application runs as a sepa-
rate controller instance. As shown in this figure, the input
translation application includes an input parser 1205, a filter
1210, a request generator 1215, a requests repository 1220, a
dispatcher 1225, a response manager 1230, and an inter-
instance communication interface 1240.

In some embodiments, the input translation application
1200 supports a set of API calls for specifying LDP sets and
information inquires. In these embodiments, the user inter-
face application that allows the user to enter input values is
written to send the inputs in the form of API calls to the input
translation application 1200. These API calls therefore
specify the LDPS (e.g., logical switch configuration specified
by the user) and the user’s information inquiry (e.g., network
traffic statistics for the logical ports of the logical switch of the
user). Also, the input translation application 1200 may get
inputs from logical controllers, physical controllers and/or
physical controllers as well as from another input translation
controller in some embodiments.

The input parser 1205 of some embodiments receives
inputs in the form of API calls from the user interface appli-
cation. In some embodiments, the input parser extracts the
user input values from the API calls and passes the input
values to the filter 1210. The filter 1210 filters out the input
values that do not conform to certain requirements. For
instance, the filter 1210 filters out the input values that specify
an invalid network address for a logical port. For those API
calls that contain non-conforming input values, the response
manager 1230 sends a response to the user indicating the
inputs are not conforming.
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The request generator 1215 generates requests to be sent to
one or more controller instances, which will process requests
to produce responses to the requests. An example request may
ask for statistical information of a logical port of a logical
switch that the user is managing. The response to this request
would include the requested statistical information prepared
by a controller instance that is responsible for managing the
LDPS associated with the logical switch.

The request generator 1215 of different embodiments gen-
erates requests of different formats, depending on the imple-
mentation of the controller instances that receive and process
the requests. For instance, the requests that the request gen-
erator 1215 of some embodiments generates are in the form of
records (e.g., data tuples) suitable for storing in the relational
database data structures of controller instances that receives
the requests. In some of these embodiments, the receiving
controller instances use an nlog table mapping engine to
process the records representing the requests. In other
embodiments, the requests are in the form of object-oriented
data objects that can interact with the NIB data structures of
controller instances that receive the request. In these embodi-
ments, the receiving controller instances processes the data
object directly on the NIB data structure without going
through the nlLog table mapping engine. The NIB data struc-
ture will be described further below.

The request generator 1215 of some embodiments deposits
the generated requests in the requests repository 1220 so that
the dispatcher 1225 can send the requests to the appropriate
controller instances. The dispatcher 1225 identifies the con-
troller instance to which each request should be sent. In some
cases, the dispatcher looks at the LDPS associated with the
request and identifies a controller instance that is the master of
that LDPS. In some cases, the dispatcher identifies a master of
aparticular switching element (i.e., a physical controller) as a
controller instance to send the request when the request is
specifically related to a switching element (e.g., when the
request is about statistical information of a logical port that is
mapped to a port of the switching element). The dispatcher
sends the request to the identified controller instance.

The inter-instance communication interface 1240 is simi-
lar to the inter-instance communication interface 845
described above by reference to FIG. 8 in that the inter-
instance communication interface 1240 establishes a commu-
nication channel (e.g., an RPC channel) with another control-
ler instance over which requests can be sent. The
communication channel of some embodiments is bidirec-
tional while in other embodiments the communication chan-
nel is unidirectional. When the channel is unidirectional, the
inter-instance communication interface establishes multiple
channels with another controller instance so that the input
translation application can send requests and receive
responses over different channels.

The response manager 1230 receives the responses from
the controller instances that processed requests through the
channel(s) established by the inter-instance communication
interface 1240. In some cases, more than one response may
return for a request that was sent out. For instance, a request
for statistical information from all logical ports of the logical
switch that the user is managing would return a response from
each controller. The responses from multiple physical con-
troller instances for multiple different switching elements
whose ports are mapped to the logical ports may return to the
input translation application 1200, either directly to the input
translation application 1200 or through the master of the
LDPS associated with the logical switch. In such cases, the
response manager 1230 merges those responses and sends a
single merged response to the user interface application.
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As mentioned above, the control application running in a
controller instance converts data records representing logical
control plane data to data records representing logical for-
warding plane data by performing conversion operations.
Specifically, in some embodiments, the control application
populates the LDPS tables (e.g., the logical forwarding
tables) that are created by the virtualization application with
LDP sets.

H. Control Layer

FIG. 13 conceptually illustrates an example conversion
operations that an instance of a control application of some
embodiments performs. This figure conceptually illustrates a
process 1300 that the control application performs to generate
logical forwarding plane data based on input event data that
specifies the logical control plane data. As described above,
the generated logical forwarding plane data is transmitted to
the virtualization application, which subsequently generates
universal physical control plane data from the logical for-
warding plane data in some embodiments. The universal
physical control plane data is propagated to the managed
switching elements (or to chassis controllers managing the
switching elements), which in turn will produce forwarding
plane data for defining forwarding behaviors of the switching
elements.

As shown in FIG. 13, the process 1300 initially receives (at
1305) data regarding an input event. The input event data may
be logical data supplied by an input translation application
that distributes the input records (i.e., requests) to different
controller instances. An example of user-supplied data could
be logical control plane data including access control list data
for a logical switch that the user manages. The input event
datamay also be logical forwarding plane data that the control
application generates, in some embodiments, from the logical
control plane data. The input event data in some embodiments
may also be universal physical control plane data received
from the virtualization application.

At 1310, the process 1300 then performs a filtering opera-
tion to determine whether this instance of the control appli-
cation is responsible for the input event data. As described
above, several instances of the control application may oper-
ate in parallel in several different controller instances to con-
trol multiple LDP sets in some embodiments. In these
embodiments, each control application uses the filtering
operation to filter out input data that does not relate to the
LDPS that the control application is not responsible for man-
aging. To perform this filtering operation, the control appli-
cation of some embodiments includes a filter module. This
module of some embodiments is a standalone module, while
in other embodiments it is implemented by a table mapping
engine (e.g., implemented by the join operations performed
by the table mapping engine) that maps records between input
tables and output tables of the control application, as further
described below.

Next, at 1315, the process determines whether the filtering
operation has filtered out the input event data. The filtering
operation filters out the input event data in some embodi-
ments when the input event data does not fall within one of the
LDP sets that the control application is responsible for man-
aging. When the process determines (at 1315) that the filter-
ing operation has filtered out the input event data, the process
transitions to 1325, which will be described further below.
Otherwise, the process 1300 transitions to 1320.

At 1320, a converter of the control application generates
one or more sets of data tuples based on the received input
event data. In some embodiments, the converter is an table
mapping engine that performs a series of table mapping
operations on the input event data to map the input event data
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to other data tuples to modify existing data or generate new
data. As mentioned above, this table mapping engine also
performs the filtering operation in some embodiments. One
example of such a table mapping engine is an nl.og table-
mapping engine which will be described below.

As mentioned above, the data that the process 1300 filters
out (at 1310) include data (e.g., configuration data) that the
control application is not responsible for managing. The pro-
cess pushes down these data to a secondary storage structure
(e.g., PTD) which is a storage structure other than the rela-
tional database data structure that contains the input and
output tables in some embodiments. Accordingly, at 1325, the
process 1300 of some embodiments translates the data in a
format that can be stored in the secondary storage structure so
that the data can be shared by the controller instance that is
responsible for managing the data. As mentioned above, the
secondary storage structure such as PTD of one controller
instance is capable of sharing data directly with the secondary
storage structure of another controller instance. The process
1300 of some embodiments also pushes down configuration
data in the output tables from the relational database data
structure to the secondary storage structure for data resil-
iency.

At 1330, the process sends the generated data tuples to a
virtualization application. The process also sends the con-
figuration data that is stored in the secondary storage structure
to one or more other controller instances that are responsible
for the configuration data. The process then ends.

The control application in some embodiments performs its
mapping operations by using the nlLog table mapping engine,
which uses a variation of the datalog table mapping tech-
nique. Datalog is used in the field of database management to
map one set of tables to another set of tables. Datalog is not a
suitable tool for performing table mapping operations in a
virtualization application of a network control system as its
current implementations are often slow. Accordingly, the
nl.og engine of some embodiments is custom designed to
operate quickly so that it can perform the real time mapping of
the LDPS data tuples to the data tuples of the managed
switching elements. This custom design is based on several
custom design choices. For instance, some embodiments
compile the nlLog table mapping engine from a set of high
level declaratory rules that are expressed by an application
developer (e.g., by a developer of a control application). In
some of these embodiments, one custom design choice that is
made for the nlLog engine is to allow the application devel-
oper to use only the AND operator to express the declaratory
rules. By preventing the developer from using other operators
(such as ORs, XORs, etc.), these embodiments ensure that the
resulting rules of the nlLog engine are expressed in terms of
AND operations that are faster to execute at run time.

Another custom design choice relates to the join operations
performed by the nlLog engine. Join operations are common
database operations for creating association between records
of different tables. In some embodiments, the n[Log engine
limits its join operations to inner join operations (also called
as internal join operations) because performing outer join
operations (also called as external join operations) can be
time consuming and therefore impractical for real time opera-
tion of the engine.

Yet another custom design choice is to implement the nLog
engine as a distributed table mapping engine that is executed
by several different virtualization applications. Some
embodiments implement the nl.og engine in a distributed
manner by partitioning management of LDP sets. Partitioning
management of the LDP sets involves specifying for each
particular LDPS only one controller instance as the instance
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responsible for specifying the records associated with that
particular LDPS. For instance, when the control system uses
three switching elements to specify five LDP sets for five
different users with two different controller instances, one
controller instance can be the master for records relating to
two of the LDP sets while the other controller instance can be
the master for the records for the other three LDP sets.

Partitioning management of the LDP sets also assigns in
some embodiments the table mapping operations for each
LDPS to the nlLog engine of the controller instance respon-
sible for the LDPS. The distribution of the n[Log table map-
ping operations across several nlLog instances reduces the
load on each nl.og instance and thereby increases the speed
by which each nlog instance can complete its mapping
operations. Also, this distribution reduces the memory size
requirement on each machine that executes a controller
instance. As further described below, some embodiments par-
tition the nlLog table mapping operations across the different
instances by designating the first join operation that is per-
formed by each nl.og instance to be based on the LDPS
parameter. This designation ensures that each nlog
instance’s join operations fail and terminate immediately
when the instance has started a set of join operations that
relate to a LDPS that is not managed by the nLog instance.

FIG. 14 illustrates a control application 1400 of some
embodiments of the invention. This application 1400 is used
in some embodiments as the control module 825 of FIG. 8.
This application 1400 uses an nlLog table mapping engine to
map input tables that contain input data tuples to data tuples
that represent the logical forwarding plane data. This appli-
cation resides on top of a virtualization application 1405 that
receives data tuples specifying LDP sets from the control
application 1400. The virtualization application 1405 maps
the data tuples to universal physical control plane data.

More specifically, the control application 1400 allows dif-
ferent users to define different LDP sets, which specify the
desired configuration of the logical switches that the users
manage. The control application 1400 through its mapping
operations converts data for each LDPS of each user into a set
of data tuples that specify the logical forwarding plane data
for the logical switch associated with the LDPS. In some
embodiments, the control application is executed on the same
host on which the virtualization application 1405 is executed.
The control application and the virtualization application do
not have to run on the same machine in other embodiments.

As shown in FIG. 14, the control application 1400 includes
a set of rule-engine input tables 1410, a set of function and
constant tables 1415, an importer 1420, a rules engine 1425,
a set of rule-engine output tables 1445, a translator 1450, an
exporter 1455, a PTD 1460, and a compiler 1435. The com-
piler 1435 is one component of the application that operates at
a different instance in time than the application’s other com-
ponents. The compiler operates when a developer needs to
specify the rules engine for a particular control application
and/or virtualized environment, whereas the rest of the appli-
cation’s modules operate at runtime when the application
interfaces with the virtualization application to deploy LDP
sets specified by one or more users.

In some embodiments, the compiler 1435 takes a relatively
small set (e.g., few hundred lines) of declarative instructions
1440 that are specified in a declarative language and converts
these into a large set (e.g., thousands of lines) of code (i.e.,
object code) that specifies the operation of the rules engine
1425, which performs the application’s table mapping. As
such, the compiler greatly simplifies the control application
developer’s process of defining and updating the control
application. This is because the compiler allows the developer
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to use a high level programming language that allows a com-
pact definition of the control application’s complex mapping
operation and to subsequently update this mapping operation
in response to any number of changes (e.g., changes in the
logical networking functions supported by the control appli-
cation, changes to desired behavior of the control application,
etc.). Moreover, the compiler relieves the developer from
considering the order at which the events would arrive at the
control application, when the developer is defining the map-
ping operation.

In some embodiments, the rule-engine (RE) input tables
1410 include tables with logical data and/or switching con-
figurations (e.g., access control list configurations, private
virtual network configurations, port security configurations,
etc.) specified by the user and/or the control application. They
also include tables that contain physical data (i.e., non-logical
data) from the switching elements managed by the virtualized
control system in some embodiments. In some embodiments,
such physical data includes data regarding the managed
switching elements (e.g., universal physical control plane
data) and other data regarding network configuration
employed by the virtualized control system to deploy the
different LDP sets of the different users.

The RE input tables 1410 are partially populated with
logical control plane data provided by the users as will be
further described below. The RE input tables 1410 also con-
tain the logical forwarding plane data and universal physical
control plane data. In addition to the RE input tables 1410, the
control application 1400 includes other miscellaneous tables
1415 that the rules engine 1425 uses to gather inputs for its
table mapping operations. These tables 1415 include constant
tables that store defined values for constants that the rules
engine 1425 needs to perform its table mapping operations.
For instance, the constant tables 1415 may include a constant
“zero” that is defined as the value 0, a constant “dispatch_
port_no” as the value 4000, and a constant “broadcast. MAC_
addr” as the value OxFF:FF:FF:FF:FF:FF.

When the rules engine 1425 references constants, the cor-
responding value defined for the constants are actually
retrieved and used. In addition, the values defined for con-
stants in the constant tables 1415 may be modified and/or
updated. In this manner, the constant tables 1415 provide the
ability to modify the value defined for constants that the rules
engine 1425 references without the need to rewrite or recom-
pile code that specifies the operation of the rules engine 1425.
The tables 1415 further include function tables that store
functions that the rules engine 1425 needs to use to calculate
values needed to populate the output tables 1445.

The rules engine 1425 performs table mapping operations
that specifies one manner for converting logical control plane
data to logical forwarding plane data. Whenever one of the
rule-engine (RE) input tables is modified, the rules engine
performs a set of table mapping operations that may result in
the modification of one or more data tuples in one or more RE
output tables.

As shown in FIG. 14, the rules engine 1425 includes an
event processor 1422, several query plans 1427, and a table
processor 1430. Each query plan is a set of rules that specifies
a set of join operations that are to be performed upon the
occurrence of a modification to one of the RE input tables.
Such a modification is referred to below as an input table
event. Each query plan is generated by the compiler 1435
from one declaratory rule in the set of declarations 1440. In
some embodiments, more than one query plan is generated
from one declaratory rule. For instance, a query plan is cre-
ated for each of the tables joined by one declaratory rule. That
is, when a declaratory rule specifies to join four tables, four



US 9,231,882 B2

41

different query plans will be created from that one declara-
tion. In some embodiments, the query plans are defined by
using the nlLog declaratory language.

In some embodiments, the compiler 1435 does not just
statically generate query plans but rather dynamically gener-
ates query plans based on performance data it gathers. The
compiler 1435 in these embodiments generates an initial set
of' query plans and lets the rules engine operate with the initial
set of query plans. The control application gathers the perfor-
mance data or receives performance feedback (e.g., from the
rules engine). Based on this data, the compiler is modified so
that the control application or a user of this application can
have the modified compiler modify the query plans while the
rules engine is not operating or during the operation of the
rules engine.

For instance, the order of the join operations in a query plan
may result in different execution times depending on the
number of tables the rules engine has to select to perform each
join operation. The compiler in these embodiments can be
re-specified in order to re-order the join operations in a par-
ticular query plan when a certain order of the join operations
in the particular query plan has resulted in a long execution
time to perform the join operations.

The event processor 1422 of the rules engine 1425 detects
the occurrence of each input table event. The event processor
of different embodiments detects the occurrence of an input
table event differently. In some embodiments, the event pro-
cessor registers for callbacks with the RE input tables for
notification of changes to the records of the RE input tables.
In such embodiments, the event processor 1422 detects an
input table event when it receives notification from an RE
input table that one of its records has changed.

In response to a detected input table event, the event pro-
cessor 1422 (1) selects the appropriate query plan for the
detected table event, and (2) directs the table processor 1430
to execute the query plan. To execute the query plan, the table
processor 1430, in some embodiments, performs the join
operations specified by the query plan to produce one or more
records that represent one or more sets of data values from one
or more input and miscellaneous tables 1410 and 1415. The
table processor 1430 of some embodiments then (1) performs
a select operation to select a subset of the data values from the
record(s) produced by the join operations, and (2) writes the
selected subset of data values in one or more RE output tables
1445.

In some embodiments, the RE output tables 1445 store
both logical and physical network element data attributes.
The tables 1445 are called RE output tables as they store the
output of the table mapping operations of the rules engine
1425. In some embodiments, the RE output tables can be
grouped in several different categories. For instance, in some
embodiments, these tables can be RE input tables and/or
control-application (CA) output tables. A table is an RE input
table when a change in the table causes the rules engine to
detect an input event that requires the execution of a query
plan. A RE output table 1445 can also be an RE input table
1410 that generates an event that causes the rules engine to
perform another query plan. Such an event is referred to as an
internal input event, and it is to be contrasted with an external
input event, which is an event that is caused by an RE input
table modification made by the control application 1400 or
the importer 1420.

A tableis a control-application output table when a change
in the table causes the exporter 1455 to export a change to the
virtualization application 1405, as further described below. A
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table in the RE output tables 1445 can be an RE input table, a
CA output table, or both an RE input table and a CA output
table.

The exporter 1455 detects changes to the CA output tables
of the RE output tables 1445. The exporter of different
embodiments detects the occurrence of a CA output table
event differently. In some embodiments, the exporter regis-
ters for callbacks with the CA output tables for notification of
changes to the records of the CA output tables. In such
embodiments, the exporter 1455 detects an output table event
when it receives notification from a CA output table that one
of'its records has changed.

In response to a detected output table event, the exporter
1455 takes some or all of modified data tuples in the modified
CA output tables and propagates this modified data tuple(s) to
the input tables (not shown) of the virtualization application
1405. In some embodiments, instead of the exporter 1455
pushing the data tuples to the virtualization application, the
virtualization application 1405 pulls the data tuples from the
CA output tables 1445 into the input tables of the virtualiza-
tion application. In some embodiments, the CA output tables
1445 of the control application 1400 and the input tables of
the virtualization 1405 may be identical. In yet other embodi-
ments, the control and virtualization applications use one set
of'tables, so that the CA output tables are essentially CA input
tables.

In some embodiments, the control application does not
keep in the output tables 1445 the data for LDP sets that the
control application is not responsible for managing. However,
such data will be translated by the translator 1450 into a
format that can be stored in the PTD and gets stored in the
PTD. The PTD of the control application 1400 propagates
this data to one or more other control application instances of
other controller instances so that some of other control appli-
cation instances that are responsible for managing the LDP
sets associated with the data can process the data.

In some embodiments, the control application also brings
the data stored in the output tables 1445 (i.e., the data that the
control application keeps in the output tables) to the PTD for
resiliency of the data. Such data is also translated by the
translator 1450, stored in the PTD, and propagated to other
control application instances of other controller instances.
Therefore, in these embodiments, a PTD of a controller
instance has all the configuration data for all LDP sets man-
aged by the virtualized control system. That is, each PTD
contains the global view of the configuration of the logical
network in some embodiments.

The importer 1420 interfaces with a number of different
sources of input data and uses the input data to modify or
create the input tables 1410. The importer 1420 of some
embodiments receives, from the input translation application
1470 through the inter-instance communication interface (not
shown), the input data. The importer 1420 also interfaces with
the PTD 1460 so that data received through the PTD from
other controller instances can be used as input data to modify
or create the input tables 1410. Moreover, the importer 1420
also detects changes with the RE input tables and the RE input
tables & CA output tables of the RE output tables 1445.

As mentioned above, the virtualization application of some
embodiments specifies the manner by which different LDP
sets of different users of a network control system can be
implemented by the switching elements managed by the net-
work control system. In some embodiments, the virtualiza-
tion application specifies the implementation of the LDP sets
within the managed switching element infrastructure by per-
forming conversion operations. These conversion operations
convert the LDP sets data records (also called data tuples
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below) to the control data records (e.g., universal physical
control plane data) that are initially stored within the man-
aged switching elements and then used by the switching
elements to produce forwarding plane data (e.g., flow entries)
for defining forwarding behaviors of the switching elements.
The conversion operations also produce other data (e.g., in
tables) that specify network constructs (e.g., tunnels, queues,
queue collections, etc.) that should be defined within and
between the managed switching elements. The network con-
structs also include managed software switching elements
that are dynamically deployed or pre-configured managed
software switching elements that are dynamically added to
the set of managed switching elements.

1. Virtualization Layer

FIG. 15 conceptually illustrates an example of such con-
version operations that the virtualization application of some
embodiments performs. This figure conceptually illustrates a
process 1500 that the virtualization application performs to
generate data tuples based on input event data. As shown in
FIG. 15, the process 1500 initially receives (at 1505) data
regarding an input event. The input event data may be logical
forwarding plane data that the control application generates
in some embodiments from the logical control plane data. The
input event data in some embodiments may also be universal
physical control plane data, customized physical control
plane data, or physical forwarding plane data.

At 1510, the process 1500 then performs a filtering opera-
tion to determine whether this instance of the virtualization
application is responsible for the input event data. As
described above, several instances of the virtualization appli-
cation may operate in parallel to control multiple sets of LDP
sets in some embodiments. In these embodiments, each vir-
tualization application uses the filtering operation to filter out
input data that does not relate to the virtualization applica-
tion’s LDP sets. Also, the virtualization application of some
embodiments filters out input data that does not relate to the
managed switching elements that this instance of the virtual-
ization application is responsible for managing.

To perform this filtering operation, the virtualization appli-
cation of some embodiments includes a filter module. This
module in some embodiments is a standalone module, while
in other embodiments it is implemented by a table mapping
engine (e.g., implemented by the join operations performed
by the table mapping engine) that maps records between input
tables and output tables of the virtualization application, as
further described below.

Next, at 1515, the process determines whether the filtering
operation has filtered out the received input event data. As
mentioned above, the instance of the virtualization applica-
tion filters out the input data when the input data is related to
a LDPS that is not one of the LDP sets of which the virtual-
ization application is the master or when the data is for a
managed switching element that is not one of the managed
switching elements of which the virtualization application is
the master. When the process determines (at 1515) that the
filtering operation has filtered out the input event, the process
transitions to 1525, which will be described further below.
Otherwise, the process 1500 transitions to 1520.

At 1520, a converter of the virtualization application gen-
erates one or more sets of data tuples based on the received
input event data. In some embodiments, the converter is a
table mapping engine that performs a series of table mapping
operations on the input event data to map the input event data
to other data tuples. As mentioned above, this table mapping
engine also performs the filtering operation in some embodi-
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ments. One example of such a table mapping engine is an
nl.og table-mapping engine which will be further described
further below.

As mentioned above, the data that the process 1500 filters
out (at 1510) include data (e.g., configuration data) that the
virtualization application is not responsible for managing.
The process pushes down these data to a secondary storage
structure (e.g., PTD) which is a storage structure other than
the relational database data structure that contains the input
and output tables in some embodiments. Accordingly, at
1525, the process 1500 of some embodiments translates
(1525) the data in a format that can be stored in the secondary
storage structure so that the data can be shared by the con-
troller instance that is responsible for managing the data. The
process 1500 of some embodiments also pushes down con-
figuration data in the output tables from the relational data-
base data structure to the secondary storage structure for data
resiliency.

At 1530, the process sends out the generated data tuples. In
some cases, the process sends the data tuples to a number of
chassis controllers so that the chassis controllers can convert
the universal physical control plane data into customized
physical control plane data before passing the customized
physical control data to the switching elements. In some
cases, the process sends the data tuples to the switching
elements of which the instance of the virtualization applica-
tion is the master. In some cases, the process also sends the
configuration data that is stored in the secondary storage
structure to one or more other controller instances that are
responsible for the configuration data. The process then ends.

FIG. 16 illustrates a virtualization application 1600 of
some embodiments of the invention. This application 1600 is
used in some embodiments as the virtualization module 830
of FIG. 8. The virtualization application 1600 uses an nl.og
table mapping engine to map input tables that contain LDPS
data tuples that represent universal physical control plane
data. This application resides below a control application
1605 that generates LDPS data tuples.

More specifically, the control application 1605 allows dif-
ferent users to define different LDP sets, which specify the
desired configuration of the logical switches that the users
manage. The control application 1605 through its mapping
operations converts data for each LDPS of each user into a set
of data tuples that specify the logical forwarding plane data
for the logical switch associated with the LDPS. In some
embodiments, the control application is executed on the same
host on which the virtualization application 1600 is executed.
The control application and the virtualization application do
not have to run on the same machine in other embodiments.

As shown in FIG. 16, the virtualization application 1600
includes a set of rule-engine input tables 1610, a set of func-
tion and constant tables 1615, an importer 1620, a rules
engine 1625, a set of rule-engine output tables 1645, a trans-
lator 1650, an exporter 1655, a PTD 1660, and a compiler
1635.

The compiler 1635 is similar to the compiler 1435
described above by reference to FIG. 14. In some embodi-
ments, the rule-engine (RE) input tables 1610 include tables
with logical data and/or switching configurations (e.g., access
control list configurations, private virtual network configura-
tions, port security configurations, etc.) specified by the user
and/or the virtualization application. In some embodiments,
they also include tables that contain physical data (i.e., non-
logical data) from the switching elements managed by the
virtualized control system. In some embodiments, such
physical data includes data regarding the managed switching
elements (e.g., universal physical control plane data) and
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other data regarding network configuration employed by the
virtualized control system to deploy the different LDP sets of
the different users.

The RE input tables 1610 are partially populated by the
LDPS data (e.g., by logical forwarding plane data) provided
by the control application 1605. The control application gen-
erates part of the LDPS data based on user input regarding the
LDP sets.

In addition to the RE input tables 1610, the virtualization
application 1600 includes other miscellaneous tables 1615
that the rules engine 1625 uses to gather inputs for its table
mapping operations. These tables 1615 include constant
tables that store defined values for constants that the rules
engine 1625 needs to perform its table mapping operations.

When the rules engine 1625 references constants, the cor-
responding value defined for the constants are actually
retrieved and used. In addition, the values defined for con-
stants in the constant table 1615 may be modified and/or
updated. In this manner, the constant tables 1615 provide the
ability to modify the value defined for constants that the rules
engine 1625 references without the need to rewrite or recom-
pile code that specifies the operation of the rules engine 1625.
The tables 1615 further include function tables that store
functions that the rules engine 1625 needs to use to calculate
values needed to populate the output tables 1645.

The rules engine 1625 performs table mapping operations
that specify one manner for implementing the LDP sets
within the managed switching element infrastructure. When-
ever one of the RE input tables is modified, the rules engine
performs a set of table mapping operations that may result in
the modification of one or more data tuples in one or more RE
output tables.

As shown in FIG. 16, the rules engine 1625 includes an
event processor 1622, several query plans 1627, and a table
processor 1630. In some embodiments, each query plan is a
set of join operations that are to be performed upon the occur-
rence of a modification to one of the RE input tables. Such a
modification is referred to below as an input table event. Each
query plan is generated by the compiler 1635 from one
declaratory rule in the set of declarations 1640. In some
embodiments, more than one query plan is generated from
one declaratory rule as described above. In some embodi-
ments, the query plans are defined by using the nLLog declara-
tory language.

The event processor 1622 of the rules engine 1625 detects
the occurrence of each input table event. The event processor
of different embodiments detects the occurrence of an input
table event differently. In some embodiments, the event pro-
cessor registers for callbacks with the RE input tables for
notification of changes to the records of the RE input tables.
In such embodiments, the event processor 1622 detects an
input table event when it receives notification from an RE
input table that one of its records has changed.

In response to a detected input table event, the event pro-
cessor 1622 (1) selects the appropriate query plan for the
detected table event, and (2) directs the table processor 1630
to execute the query plan. To execute the query plan, the table
processor 1630 in some embodiments performs the join
operations specified by the query plan to produce one or more
records that represent one or more sets of data values from one
or more input and miscellaneous tables 1610 and 1615. The
table processor 1630 of some embodiments then (1) performs
a select operation to select a subset of the data values from the
record(s) produced by the join operations, and (2) writes the
selected subset of data values in one or more RE output tables
1645.
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In some embodiments, the RE output tables 1645 store
both logical and physical network element data attributes.
The tables 1645 are called RE output tables as they store the
output of the table mapping operations of the rules engine
1625. In some embodiments, the RE output tables can be
grouped in several different categories. For instance, in some
embodiments, these tables can be RE input tables and/or
virtualization-application (VA) output tables. A tableisanRE
input table when a change in the table causes the rules engine
to detect an input event that requires the execution of a query
plan. A RE output table 1645 can also be an RE input table
1610 that generates an event that causes the rules engine to
perform another query plan after it is modified by the rules
engine. Such an event is referred to as an internal input event,
and it is to be contrasted with an external input event, which
is an event that is caused by an RE input table modification
made by the control application 1605 via the importer 1620.

A table is a virtualization-application output table when a
change in the table causes the exporter 1655 to export a
change to the managed switching elements or other controller
instances. As shownin FIG. 17, a table in the RE output tables
1645 can be an RE input table 1610, a VA output table 1705,
or both an RE input table 1610 and a VA output table 1705.

The exporter 1655 detects changes to the VA output tables
1705 of the RE output tables 1645. The exporter of different
embodiments detects the occurrence of a VA output table
event differently. In some embodiments, the exporter regis-
ters for callbacks with the VA output tables for notification of
changes to the records of the VA output tables. In such
embodiments, the exporter 1655 detects an output table event
when it receives notification from a VA output table that one
of'its records has changed.

In response to a detected output table event, the exporter
1655 takes each modified data tuple in the modified VA output
tables and propagates this modified data tuple to one or more
of'other controller instances (e.g., chassis controller) orto one
or more the managed switching elements. In doing this, the
exporter completes the deployment of the LDPS (e.g., one or
more logical switching configurations) to one or more man-
aged switching elements as specified by the records.

As the VA output tables store both logical and physical
network element data attributes in some embodiments, the
PTD 1660 in some embodiments stores both logical and
physical network element attributes that are identical or
derived from the logical and physical network element data
attributes in the output tables 1645. In other embodiments,
however, the PTD 1660 only stores physical network element
attributes that are identical or derived from the physical net-
work element data attributes in the output tables 1645.

In some embodiments, the virtualization application does
not keep in the output tables 1645 the data for LDP sets that
the virtualization application is not responsible for managing.
However, such data will be translated by the translator 1650
into a format that can be stored in the PTD and then gets stored
in the PTD. The PTD of the virtualization application 1600
propagates this data to one or more other virtualization appli-
cation instances of other controller instances so that some of
other virtualization application instances that are responsible
for managing the LDP sets associated with the data can pro-
cess the data.

In some embodiments, the virtualization application also
brings the data stored in the output tables 1645 (i.e., the data
that the virtualization application keeps in the output tables)
to the PTD for resiliency of the data. Such data is also trans-
lated by the translator 1650, stored in the PTD, and propa-
gated to other virtualization application instances of other
controller instances. Therefore, in these embodiments, a PTD
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of a controller instance has all the configuration data for all
LDP sets managed by the virtualized control system. That is,
each PTD contains the global view of the configuration of the
logical network in some embodiments.

The importer 1620 interfaces with a number of different
sources of input data and uses the input data to modify or
create the input tables 1610. The importer 1620 of some
embodiments receives, from the input translation application
1670 through the inter-instance communication interface, the
input data. The importer 1620 also interfaces with the PTD
1660 so that data received through the PTD from other con-
troller instances can be used as input data to modify or create
the input tables 1610. Moreover, the importer 1620 also
detects changes with the RE input tables and the RE input
tables & VA output tables of the RE output tables 1645.

J. Rules Engine

1. Designing the n[Log Table Mapping Engine

In some embodiments, the control application 1400 and the
virtualization application 1600 each uses a variation of the
datalog database language, called nl.og, to create the table
mapping engine that maps input tables containing LDPS data
and switching element attributes to the output tables. Like
datalog, nlLog provides a few declaratory rules and operators
that allow a developer to specify different operations that are
to be performed upon the occurrence of different events. In
some embodiments, nLLog provides a smaller subset of the
operators that are provided by datalog in order to increase the
operational speed of nlLog. For instance, in some embodi-
ments, nlLog only allows the AND operator to be used in any
of the declaratory rules.

The declaratory rules and operations that are specified
through nlog are then compiled into a much larger set of rules
by an nlLog compiler. In some embodiments, this compiler
translates each rule that is meant to respond to an event into
several sets of database join operations. Collectively the
larger set of rules forms the table mapping, rules engine that
is referred to below as the nl.og engine. For simplicity of
discussion, FIGS. 18-22 are described below by referring to
the rules engine 1625 and the virtualization application 1600
although the description for these figures are also applicable
to the rules engine 1425 and the control application 1400.

FIG. 18 illustrates a development process 1800 that some
embodiments employ to develop the rules engine 1625 of the
virtualization application 1600. As shown in this figure, this
process uses a declaration toolkit 1805 and a compiler 1810.
The toolkit 1805 allows a developer (e.g., a developer of a
control application 1605 that operates on top of the virtual-
ization application 1600) to specify different sets of rules to
perform different operations upon occurrence of different sets
of conditions.

One example 1815 of such a rule is illustrated in FIG. 18.
This example is a multi-conditional rule that specifies that an
Action X has to be taken if four conditions A, B, C, and D are
true. The expression of each condition as true in this example
is not meant to convey that all embodiments express each
condition for each rule as True or False. For some embodi-
ments, this expression is meant to convey the concept of the
existence of a condition, which may or may not be true. For
example, in some such embodiments, the condition “A=True”
might be expressed as “Is variable Z=A?” In other words, A in
this example is the value of a parameter Z, and the condition
is true when Z has a value A.

Irrespective of how the conditions are expressed, a multi-
conditional rule in some embodiments specifies the taking of
an action when certain conditions in the network are met.
Examples of such actions include creation or deletion of new
packet flow entries, creation or deletion of new network con-
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structs, modification to existing network constructs, etc. In
the virtualization application 1600 these actions are often
implemented by the rules engine 1625 by creating, deleting,
or modifying records in the output tables. In some embodi-
ments, an action entails a removal or a creation of a data tuple.

As shown in FIG. 18, the multi-conditional rule 1815 uses
only the AND operator to express the rule. In other words,
each of the conditions A, B, C and D has to be true before the
Action X is to be taken. In some embodiments, the declaration
toolkit 1805 only allows the developers to utilize the AND
operator because excluding the other operators (such as ORs,
XORs, etc.) that are allowed by datalog allows nl.og to oper-
ate faster than datalog.

The compiler 1810 converts each rule specified by the
declaration toolkit 1805 into a query plan 1820 of the rules
engine. FIG. 18 illustrates the creation of three query plans
18204-1820c¢ for three rules 1815a-1815¢. Each query plan
includes one or more sets of join operations. Each set of join
operations specifies one or more join operations that are to be
performed upon the occurrence of a particular event in a
particular RE input table, where the particular event might
correspond to the addition, deletion or modification of an
entry in the particular RE input table.

In some embodiments, the compiler 1810 converts each
multi-conditional rule into several sets of join operations,
with each set of join operations being specified for execution
upon the detection of the occurrence of one of the conditions.
Under this approach, the event for which the set of join
operations is specified is one of the conditions of the multi-
conditional rule. Given that the multi-conditional rule has
multiple conditions, the compiler in these embodiments
specifies multiple sets of join operations to address the occur-
rence of each of the conditions.

FIG. 18 illustrates this conversion of a multi-conditional
rule into several sets of join operations. Specifically, it illus-
trates the conversion of the four-condition rule 1815 into the
query plan 1820a, which has four sets of join operations. In
this example, one join-operation set 1825 is to be performed
when condition A occurs, one join-operation set 1830 is to be
performed when condition B occurs, one join-operation set
1835 is to be performed when condition C occurs, and one
join-operation set 1840 is to be performed when condition D
occurs.

These four sets of operations collectively represent the
query plan 18204 that the rules engine 1625 performs upon
the occurrence of an RE input table event relating to any of the
parameters A, B, C, or D. When the input table event relates
to one of these parameters (e.g., parameter B) but one of the
other parameters (e.g., parameters A, C, and D) is not true,
then the set of join operations fails and no output table is
modified. But, when the input table event relates to one of
these parameters (e.g., parameter B) and all of the other
parameters (e.g., parameters A, C, and D) are true, then the set
ofjoin operations does not fail and an output table is modified
to perform the action X. In some embodiments, these join
operations are internal join operations. In the example illus-
trated in FIG. 18, each set of join operations terminates with
aselect command that selects entries in the record(s) resulting
from the set of join operations to output to one or more output
tables.

To implement the nlLog engine in a distributed manner,
some embodiments partition management of LDP sets by
assigning the management of each LDPS to one controller
instance. This partition management of the LDPS is also
referred to as serialization of management of the LDPS. The
rules engine 1625 of some embodiments implements this
partitioned management of the LDPS by having a join to the
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LDPS entry be the first join in each set of join operations that
is not triggered by an event in a LDPS input table.

FIG. 19 illustrates one such approach. Specifically, for the
same four-condition rule 1815a illustrated in FIG. 18, it gen-
erates a different query plan 1920q. This query plan is part of
three query plans 1920a-1920c¢ that this figure shows the
compiler 1910 generating for the three rules 1815a-1815¢
specified through the declaration toolkit 1805. Like the query
plan 1820q that has four sets of join operations 1825, 1830,
1835 and 1840 for the four-condition rule 1815a, the query
plan 1920a also has four sets of join operations 1930, 1935,
1940 and 1945 for this rule 1815a.

The four sets of join operations 1930, 1935, 1940 and 1945
are operational sets that are each to be performed upon the
occurrence of one of the conditions A, B, C, and D. The first
joinoperations in each of these four sets 1930, 1935, 1940 and
1945 is a join with the LDPS table managed by the virtual-
ization application instance. Accordingly, even when the
input table event relates to one of these four parameters (e.g.,
parameter B) and all of the other parameters (e.g., parameters
A, C, and D) are true, the set of join operations may fail if the
event has occurred for a LDPS that is not managed by this
virtualization application instance. The set of join operations
does not fail and an output table is modified to perform the
desire action only when (1) the input table event relates to one
of these four parameters (e.g., parameter B), all of the other
parameters (e.g., parameters A, C, and D) are true, and (3) the
event relates to a LDPS that is managed by this virtualization
application instance. How the insertion of the join operation
to the LDPS table allows the virtualization application to
partition management of the LDP sets is described in detail
further below.

2. Table Mapping Operations Upon Occurrence of Event

FIG. 20 conceptually illustrates a process 2000 that the
virtualization application 1600 performs in some embodi-
ments each time a record in an RE input table changes. This
change may be a change made through the control application
1605. Alternatively, it may be a change that is made by the
importer 1620 after the importer 1620 detects or receives a
change in the PTD 1660. The change to the RE input table
record can entail the addition, deletion or modification of the
record.

As shown in FIG. 20, the process 2000 initially detects (at
2005) a change in an RE input table 1610. In some embodi-
ments, the event processor 1622 is the module that detects this
change. Next, at 2010, the process 2000 identifies the query
plan associated with the detected RE input table event. As
mentioned above, each query plan in some embodiments
specifies a set of join operations that are to be performed upon
the occurrence of an input table event. In some embodiments,
the event processor 1622 is also the module that performs this
operation (i.e., is the module that identifies the query plan).

At 2015, the process 2000 executes the query plan for the
detected input table event. In some embodiments, the event
processor 1622 directs the table processor 1630 to execute the
query plan. To execute a query plan that is specified in terms
of a set of join operations, the table processor 1630 in some
embodiments performs the set of join operations specified by
the query plan to produce one or more records that represent
one or more sets of data values from one or more input and
miscellaneous tables 1610 and 1615.

FIG. 21 illustrates an example of a set of join operations
2105. This set of join operations is performed when an event
is detected with respect to record 2110 of an input table 2115.
The join operations in this set specify that the modified record
2110 in table 2115 should be joined with the matching
record(s) in table 2120. This joined record should then be
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joined with the matching record(s) in table 2125, and this
resulting joined record should finally be joined with the
matching record(s) in table 2130.

Two records in two tables “match” when values of a com-
mon key (e.g., a primary key and a foreign key) that the two
tables share are the same, in some embodiments. In the
example in FIG. 21, the records 2110 and 2135 in tables 2115
and 2120 match because the values C in these records match.
Similarly, the records 2135 and 2140 in tables 2120 and 2125
match because the values F in these records match. Finally,
the records 2140 and 2145 in tables 2125 and 2130 match
because the values R in these records match. The joining of
the records 2110, 2135, 2140, and 2145 results in the com-
bined record 2150. In the example shown in FIG. 21, the
result of ajoin operation between two tables (e.g., tables 2115
and 2120) is a single record (e.g., ABCDFGH). However, in
some cases, the result of a join operation between two tables
may be multiple records.

Even though in the example illustrated in FIG. 21 a record
is produced as the result ofthe set of join operations, the set of
join operations in some cases might result in a null record. For
instance, as described further below, a null record results
when the set of join operations terminates on the first join
because the detected event relates to a LDPS not managed by
a particular instance of the virtualization application. Accord-
ingly, at 2020, the process determines whether the query plan
has failed (e.g., whether the set of join operations resulted in
a null record). If so, the process ends. In some embodiments,
the operation 2020 is implicitly performed by the table pro-
cessor when it terminates its operations upon the failure of
one of the join operations.

When the process 2000 determines (at 2020) that the query
planhas not failed, it stores (at 2025) the output resulting from
the execution of the query plan in one or more of the output
tables. In some embodiments, the table processor 1630 per-
forms this operation by (1) performing a select operation to
select a subset of the data values from the record(s) produced
by the join operations, and (2) writing the selected subset of
data values in one or more RE output tables 1645. FIG. 21
illustrates an example of this selection operation. Specifi-
cally, it illustrates the selection of values B, F, P and S from
the combined record 2150 and the writing of these values into
a record 2165 of an output table 2160.

As mentioned above, the RE output tables can be catego-
rized in some embodiments as (1) an RE input table only, (2)
a VA output table only, or (3) both an RE input table and a VA
output table. When the execution of the query plan results in
the modification a VA output table, the process 2000 exports
(at 2030) the changes to this output table to one or more other
controller instances or one or more managed switching ele-
ments. In some embodiments, the exporter 1655 detects
changes to the VA output tables 1705 of the RE output tables
1645, and in response, it propagates the modified data tuple in
the modified VA output table to other controller instances or
managed switching elements. In doing this, the exporter com-
pletes the deployment of the LDP sets (e.g., one or more
logical switching configurations) to one or more managed
switching elements as specified by the output tables.

At 2035, the process determines whether the execution of
the query plan resulted in the modification of the RE input
table. This operation is implicitly performed in some embodi-
ments when the event processor 1622 determines that the
output table that was modified previously at 2025 modified an
RE input table. As mentioned above, an RE output table 1645
can also be an RE input table 1610 that generates an event that
causes the rules engine to perform another query plan after it
is modified by the rules engine. Such an event is referred to as
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an internal input event, and it is to be contrasted with an
external input event, which is an event that is caused by an RE
input table modification made by the control application 1605
or the importer 1620. When the process determines (at 2030)
that an internal input event was created, it returns to 2010 to
perform operations 2010-2035 for this new internal input
event. The process terminates when it determines (at 2035)
that the execution of the query plan at 2035 did not result in an
internal input event.

One of ordinary skill in the art will recognize that process
2000 is a conceptual representation of the operations used to
map a change in one or more input tables to one or more
output tables. The specific operations of process 2000 may
not be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments. For instance, the pro-
cess 2000 in some embodiments batches up a set of changes
in RE input tables 1610 and identifies (at 2010) a query plan
associated with the set of detected RE input table events. The
process in these embodiments executes (at 2020) the query
plan for the whole set of the RE input table events rather than
for a single RE input table event. Batching up the RE input
table events in some embodiments results in better perfor-
mance of the table mapping operations. For example, batch-
ing the RE input table events improves performance because
it reduces the number of instances that the process 2000 will
produce additional RE input table events that would cause it
to start another iteration of itself

3. Parallel, Distributed Management of LDP Sets

As mentioned above, some embodiments implement the
nl.og engine as a distributed table mapping engine that is
executed by different virtualization applications of different
controller instances. To implement the nlLog engine in a dis-
tributed manner, some embodiments partition the manage-
ment ofthe LDP sets by specifying, for each particular LDPS,
only one controller instance as the instance responsible for
specifying the records associated with that particular LDPS.
Partitioning the management of the LDP sets also assigns in
some embodiments the table mapping operations for each
LDPS to the nlLog engine of the controller instance respon-
sible for the LDPS.

As described above, some embodiments partition the nLL.og
table mapping operations across the different instances by
designating the first join operation that is performed by each
nl.og instance to be based on the LDPS parameter. This
designation ensures that each nlLog instance’s join operations
fail and terminate immediately when the instance has started
a set of join operations that relate to a LDPS that is not
managed by the nlLog instance.

FIG. 22 illustrates an example of a set of join operations
failing when they relate to a LDPS that does not relate to an
input table event that has occurred. Specifically, this figure
illustrates four query plans 2205, 2210, 2215 and 2220 of a
rules engine 2225 of a particular virtualization application
instance 2230. Two of these query plans 2210 and 2215
specify two sets of join operations that should be performed
upon occurrence of input table events B and W respectively,
while two of the query plans 2205 and 2220 specify two sets
of join operations that should be performed upon occurrence
of input table event A.

In the example illustrated in FIG. 22, the two query plans
2210 and 2215 are not executed because an input table event
A has occurred for a LDPS 2 and these two plans are not
associated with such an event. Instead, the two query plans
2205 and 2220 are executed because they are associated with
the input table event A that has occurred. As shown in this
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figure, the occurrence of this event results in two sets of join
operations being performed to execute the two query plans
2205 and 2220.

The first set of join operations 2240 for the query plan 2205
fails on the first join operation 2235 because it is a join with
the LDPS table, which for the virtualization application
instance 2230 does not contain a record for the LDPS 1,
which is a LDPS not managed by the virtualization applica-
tion instance 2230. In some embodiments, even though the
first join operation 2235 has failed, the remaining join opera-
tions (not shown) of the query plan 2240 will still be per-
formed and fail. In other embodiments, the remaining join
operations of the query plan 2240 will not be performed as
shown.

The second set of join operations 2245 does not fail, how-
ever, because it is for the LDPS 2, which is a LDPS managed
by the virtualization application instance 2230 and therefore
has a record in the LDPS table of this application instance.
This set of join operations has four stages that each performs
one join operation. Also, as shown in FIG. 22, the set of join
operations terminates with a selection operation that selects a
portion of the combined record produced through the join
operations. The distribution of the nLog table mapping opera-
tions across several nlLog instances reduces the load on each
nl.og instance and thereby increases the speed by which each
nl.og instance can complete its mapping operations.

K. Network Controller

FIG. 23 illustrates a simplified view of the table mapping
operations of the control and virtualization applications of
some embodiments of the invention. As indicated in the top
half of this figure, the control application 2305 maps logical
control plane data to logical forwarding plane data, which the
virtualization application 2310 of some embodiments then
maps to universal physical control plane data or customized
physical control plane data.

The bottom half of this figure illustrates the table mapping
operations of the control application and the virtualization
application. As shown in this half, the control application’s
input tables 2315 store logical control plane (LCP) data as the
LCP data along with data in the constant and function tables
(not shown) is used by the control application’s nlLog engine
2320 in some embodiments to generate logical forwarding
plane (LFP) data. The exporter 2325 sends the generated data
to the virtualization application 2310 for further processing.

This figure shows that the importer 2350 receives the LCP
data from the user (e.g., thru an input translation application)
and update input tables 2315 of the control application with
the LCP data. This figure further shows that the importer 2350
detects or receives changes in the PTD 2340 (e.g., LCP data
changes originated from the other controller instances) in
some embodiments and in response to such changes the
importer 2350 may update input tables 2315.

The bottom half of this figure also illustrates the table
mapping operations of the virtualization application 2310. As
shown, the virtualization application’s input tables 2355 store
logical forwarding plane (LFP) data as the LFP data along
with data in the constant and function tables (not shown) is
used by the virtualization application’s nlLog engine 2320 in
some embodiments to generate universal physical control
plane (UPCP) data and/or customized physical control plane
(CPCP) data. In some embodiments, the exporter 2370 sends
the generated UPCP data to one or more other controller
instances (e.g., a chassis controller) to generate CPCP data
before pushing this data to the managed switching elements
or to one or more managed switching elements that convert
the UPCP data to CPCP data specific to the managed switch-
ing elements. In other embodiments, the exporter 2370 sends
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the generate CPCP data to one or more managed switching
elements to define the forwarding behaviors of these managed
switching elements.

This figure shows that the importer 2375 receives the LFP
data from the control application 2305 and update input tables
2355 of the virtualization application with the LFP data. This
figure further shows that the importer 2375 detects or receives
changes in the PTD 2340 (e.g., LCP data changes originated
from the other controller instances) in some embodiments
and in response to such changes the importer 2375 may
update input tables 2355.

As mentioned above, some of the logical or physical data
that an importer pushes to the input tables of the control or
virtualization application relates to data that is generated by
other controller instances and passed to the PTD. For
instance, in some embodiments, the logical data regarding
logical constructs (e.g., logical ports, logical queues, etc.) that
relates to multiple LDP sets might change, and the translator
(e.g., translator 2380 of the controller instance) may write this
change to the input tables. Another example of such logical
data that is produced by another controller instance in a multi
controller instance environment occurs when a user provides
logical control plane data for a LDPS on a first controller
instance that is not responsible for the LDPS. This change is
added to the PTD of the first controller instance by the trans-
lator of the first controller instance. This change is then propa-
gated across the PTDs of other controller instances by repli-
cation processes performed by the PTDs. The importer of a
second controller instance, which is the master of the LDPS,
eventually takes this change and then writes the change to the
one of the application’s input tables (e.g., the control appli-
cation’s input table). Accordingly, in such cases, the logical
data that the importer writes to the input tables in some cases
may originate from the PTD of another controller instance.

As mentioned above, the control application 2305 and the
virtualization application 2310 are two separate applications
that operate on the same machine or different machines in
some embodiments. Other embodiments, however, imple-
ment these two applications as two modules of one integrated
application, with the control application module 2305 gener-
ating logical data in the logical forwarding plane and the
virtualization application generating physical data in the uni-
versal physical control plane or in the customized physical
control plane.

Still other embodiments integrate the control and virtual-
ization operations of these two applications within one inte-
grated application, without separating these operations into
two separate modules. FIG. 24 illustrates an example of such
an integrated application 2400. This application 2400 uses an
nl.og table mapping engine 2410 to map data from an input
set of tables 2415 to an output set of tables 2420, which like
the above described embodiments, may include one or more
tables in the input set of tables. The input set of tables in this
integrated application may include LCP data that need to be
mapped to LFP data, or it may include LFP data that need to
be mapped to CPCP or UPCP data. The input set of tables may
also include UPCP data that need to be mapped to CPCP data.

In this integrated control and virtualization application
2400, the importer 2430 gets the input data from the users or
other controller instances. The importer 2430 also detects or
receives the changes in the PTD 2440 that is replicated to the
PTD. The exporter 2425 exports output table records to other
controller instances or managed switching elements.

When sending the output table records to managed switch-
ing elements, the exporter uses a managed switching element
communication interface (not shown) so that the data con-
tained in the records are sent to a managed switching element
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over two channels. One channel is established using a switch
control protocol (e.g., OpenFlow) for controlling the for-
warding plane of the managed switching element, and the
other channel is established using a configuration protocol to
send configuration data.

When sending the output table records to a chassis control-
ler, the exporter in some embodiments uses a single channel
of communication to send the data contained in the records. In
these embodiments, the chassis controller accepts the data
through this single channel but communicates with the man-
aged switching element over two channels. A chassis control-
ler is described in more details further below by reference to
FIG. 29.

FIG. 25 illustrates another example of such an integrated
application 2500. The integrated application 2500 uses a net-
work information base (NIB) data structure 2510 to store
some of the input and output data of the nlLog table mapping
engine 2410. The NIB data structure is described in detail in
U.S. patent application Ser. No. 13/177,533, which is incor-
porated herein by reference. As described in the application
Ser. No. 13/177,533, the NIB data structure stores data in the
form of an object-oriented data objects. In the integrated
application 2500, the output tables 2420 are the primary
storage structure. The PTD 2440 and the NIB 2510 are the
secondary storage structures.

The integrated application 2500 uses the nl.og table map-
ping engine 2410 to map data from the input set of tables 2415
to the output set of tables 2420. In some embodiments, some
of'the data in the output set of tables 2420 is exported by the
exporter 2425 to one or more other controller instances or one
or managed switching elements. Such exported data include
UPCP or CPCP data that would define flow behaviors of the
managed switching elements. These data may be backed up in
the PTD by the translator 2435 in the PTD 2440 for data
resiliency.

Some of the data in the output set of tables 2420 is pub-
lished to the NIB 2510 by the NIB publisher 2505. These data
include configuration information of'the logical switches that
the users manage using the integrated application 2500. The
data stored in the NIB 2510 is replicated to other NIBs of
other controller instances by the coordination manager 2520.

The NIB monitor 2515 receives notifications of changes
from the NIB 2510, and for some notifications (e.g., those
relating to the LDP sets for which the integrated application is
the master), pushes changes to the input tables 2415 via the
importer 2430.

The query manager 2525 interfaces with an input transla-
tion application to receive queries regarding configuration
data. As shown in this figure, the manager 2525 of some
embodiments also interfaces with the NIB 2510 in order to
query the NIB to provide the state information (e.g., logical
port statistics) regarding the logical network elements that the
user is managing. In other embodiments, however, the query
manager 2525 queries the output tables 2420 to obtain the
state information.

In some embodiments, the application 2500 uses second-
ary storage structures other than the PTD and the NIB. These
structures include a persistent non-transactional database
(PNTD) and a hash table. In some embodiments, these two
types of secondary storage structures store different types of
data, store data in different manners, and/or provide different
query interfaces that handle different types of queries.

The PNTD is a persistent database that is stored on disk or
other non-volatile memory. Some embodiments use this data-
base to store data (e.g., statistics, computations, etc.) regard-
ing one or more switching element attributes or operations.
For instance, this database is used in some embodiment to
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store the number of packets routed through a particular port of
a particular switching element. Other examples of types of
data stored in the PNTD include error messages, log files,
warning messages, and billing data.

The PNTD in some embodiments has a database query
manager (not shown) that can process database queries, but as
it is not a transactional database, this query manager cannot
handle complex conditional transactional queries. In some
embodiments, accesses to the PNTD are faster than accesses
to the PTD but slower than accesses to the hash table.

Unlike the PNTD, the hash table is not a database that is
stored on disk or other non-volatile memory. Instead, it is a
storage structure that is stored in volatile system memory
(e.g., RAM). It uses hashing techniques that use hashed indi-
ces to quickly identify records that are stored in the table. This
structure combined with the hash table’s placement in the
system memory allows this table to be accessed very quickly.
To facilitate this quick access, a simplified query interface is
used in some embodiments. For instance, in some embodi-
ments, the hash table has just two queries: a Put query for
writing values to the table and a Get query for retrieving
values from the table. Some embodiments use the hash table
to store data that change quickly. Examples of such quick-
changing data include network entity status, statistics, state,
uptime, link arrangement, and packet handling information.
Furthermore, in some embodiments, the integrated applica-
tion uses the hash tables as a cache to store information that is
repeatedly queried for, such as flow entries that will be written
to multiple nodes. Some embodiments employ a hash struc-
ture in the NIB in order to quickly access records in the NIB.
Accordingly, in some of these embodiments, the hash table is
part of the NIB data structure.

The PTD and the PNTD improve the resiliency of the
controller by preserving network data on hard disks. If a
controller system fails, network configuration data will be
preserved on disk in the PTD and log file information will be
preserved on disk in the PNTD.

FIG. 26 illustrates additional details regarding the opera-
tion of the integrated application 2400 of some embodiments
of'the invention. As described above, the importer 2430 inter-
faces with the input translation application to receive input
data and also interfaces with the PTD 2440 to detect or receive
changes to the PTD 2440 that originated from other controller
instance(s). In the examples described above, the importer
2430 may modity one or more a set of input tables 2415 when
it receives input data. The rules engine 2410 then performs a
series of mapping operations to map the modified input tables
to the output tables 2420, which may include input tables,
output tables and tables that serve as both input tables and
output tables.

In some cases, the modified input tables become the output
tables without being further modified by the rules engine
2410, as if the importer 2430 had directly modified the output
tables 2420 in response to receiving certain input data. Such
input data in some embodiments relate to some of the changes
to the state and configuration of the managed switching ele-
ments. That is, these changes originate from the managed
switching elements. By directly writing such data to the out-
put tables, the importer keeps the output tables updated with
the current state and configuration of the managed switching
elements.

FIG. 26 conceptually illustrates that some of the output
tables 2420 conceptually include two representations 2610
and 2615 of the state and configuration of the managed
switching elements. The first representation 2610 in some
embodiments includes data that specify the desired state and
configuration of the managed switching elements, while the
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second representation 2615 includes data specifying the cur-
rent state and configuration of the managed switching ele-
ments. The data of the first representation 2610 is the result of
table mapping operations performed by the rules engine
2410. Thus, in some embodiments, the data of the first rep-
resentation 2610 is universal physical control plane data or
customized physical control plane data produced by the rules
engine 2410 based on changes in logical forwarding data
stored in the input tables 2415. On the other hand, the data of
the second representation 2615 is directly modified by the
importer 2430. This data is also universal physical control
plane data or customized physical control data in some
embodiments. The data of' the first representation and the data
of'the second representation do not always match because, for
example, a failure of a managed switching element that is
reflected in the second representation may not have been
reflected in the first representation yet.

As shown, the application 2400 conceptually includes a
difference assessor 2605. The difference assessor 2605
detects a change in the first representation 2610 or in the
second representation 2615. A change in the first representa-
tion may occur when the rules engine 2410 puts the result of
its mapping operations in the output tables 2420. A change in
the second representation may occur when the importer
directly updates the output tables 2420 when the changes
come from the managed switching element(s). Upon detect-
ing a change in the output tables, the difference assessor 2605
in some embodiments examines both the first representation
2610 and the second representation 2615 to find the differ-
ence, if any, between these two representations.

When there is no difference between these two represen-
tations, the difference assessor 2605 takes no further action
because the current state and configuration of the managed
switching elements are already what they should be. How-
ever, when there is a difference, the different assessor 2605
may have the exporter 2425 export the difference (e.g., data
tuples) to the managed switching elements so that the state
and configuration of the managed switching elements will be
the state and configuration specified by the first representa-
tion 2610. Also, the translator 2435 will translate and store the
difference in the PDT 2440 so that the difference will be
propagated to other controller instances.

Also, when the difference assessor detects a difference
between the two representations, the difference assessor in
some embodiments may call the input tables of the integrated
application to initiate additional table mapping operations to
reconcile the difference between the desired and current val-
ues. Alternatively, in other embodiments, the importer will
end up updating the input tables based on the changes in the
PTD at the same time it updates the output tables and these
will trigger the nlL.og operations that might update the output
table.

In some embodiments, the integrated application 2400
does not store the desired and current representations 2610
and 2615 of the universal or customized physical control
plane data, and does not use a difference assessor 2605 to
assess whether two corresponding representations are identi-
cal. Instead, the integrated application 2400 stores each set of
universal or customized physical control plane data in a for-
mat that identifies differences between the desired data value
and the current data value. When the difference between the
desired and current values is significant, the integrated appli-
cation 2400 of some embodiments may have the exporter to
push a data tuple change to the managed switching elements,
or may call the input tables of the integrated application to
initiate additional table mapping operations to reconcile the
difference between the desired and current values.
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The operation of the integrated application 2400 will now
be described with an example network event (i.e., a change in
the network switching elements). In this example, the switch-
ing elements managed by the integrated application 2400
include a second-level managed switching element. A sec-
ond-level managed switching element is a managed non-edge
switching element, which, in contrast to an managed edge
switching element, does not send and receive packets directly
to and from the machines. A second-level managed switching
element facilitates packet exchanges between non-edge man-
aged switching elements and edge managed switching ele-
ments. A pool node and an extender, which are described in
U.S. patent application Ser. No. 13/177,535, are also second-
level managed switching elements. The pool node shuts down
for somereason (e.g., by hardware or software failure) and the
two bridges of the pool node get shut down together with the
pool node.

The importer 2430 in this example then receives this
update and subsequently writes information to both the input
tables 2415 and the output tables 2420 (specifically, the sec-
ond representation 2615). The rules engine 2410 performs
mapping operations upon detecting the change in the input
tables 2415 but the mapping result (i.e., the first representa-
tion 2610) in this example will not change the desired data
value regarding the pool node and its bridges. That is, the
desired data value would still indicate that the pool node and
the two bridges should exist in the configuration of the sys-
tem. The second representation 2615 would also indicate the
presence of the pool node and its bridges in the configuration.

The pool node then restarts but the root bridge and the
patch bridge do not come back up in this example. The pool
node will let the importer know that the pool node is back up
and the importer updates the input tables 2415 and the second
representation 2615 of the output tables accordingly. The
rules engine 2410 performs mapping operations on the modi-
fied input tables 2415 but the resulting desired data value
would still not change because there was no change as to the
existence of the pool node in the configuration of the system.
However, the current data value in the second representation
2615 would indicate at this point that the pool node has come
back up but not the bridges.

The difference assessor 2605 detects the changes in the first
and second representations and compares the desired and
current data values regarding the pool node and its bridges.
The difference assessor 2605 determines the difference,
which is the existence of the two bridges in the pool node. The
difference assessor 2605 notifies the exporter 2425 of this
difference. The exporter 2425 exports this difference to the
pool node so that the pool node creates the root and patch
bridges in it. The translator 2435 will also put this difference
in the PTD 2440 and the coordination manager subsequently
propagates this difference to one or more other controller
instances.

III. Universal Forwarding State

Traditionally, in routing-protocol based, distributed net-
working computing, the computation of forwarding state
(e.g., computation of physical control plane data) by a control
plane of a switching element needs to be quick enough to
meet the convergence requirements of the forwarding plane
that is locally attached to the switching element. That is, the
control plane needs to compute the control logic of the
switching element quickly so that the forwarding plane can
update flow entries quickly to correctly forward data packets
entering the switching element according to the flow entries.

When centralizing the control plane (i.e., when the control
plane data is managed by a centralized network controller),
the efficiency of the computation of the forwarding state
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becomes more critical. In particular, moving the computation
from many switching elements to one or more central con-
troller instances may cause the central controller cluster to
become a bottleneck to scalability because the central con-
troller’s computational resources (e.g., memory, CPU cycles,
etc.) may not be sufficient to rapidly handle the computations,
despite the central controller instances typically having more
computational resources than traditional forwarding ele-
ments (such as routers, physical switches, virtual switches,
etc.). Also, while these central computational resources can
be scaled, economical deployment factors may limit the
amount of computational resources for the central controller
instances (e.g., the central controller instances have a limited
number of servers and CPUs for economic reason). This
makes an efficient implementation of the state computation a
critical factor in building a centralized control plane that can
scale to large-scale networks while remaining practically
deployable.

In network virtualization, the opportunities for optimiza-
tion are especially large. The computation of the forwarding
state for a single LDPS involves computing the state for all
involved physical switching elements over which the LDPS
spans (for all switching elements that implement the LDPS),
including individual switching elements that host the smallest
portions of the LDPS (such as a single logical port). In case of
a large LDPS (e.g., one with hundreds or even thousands of
ports), the degree of the span can be significant. However, at
the high-level, the state across the elements still realizes only
a single forwarding behavior, as it is still fundamentally only
about a single LDPS.

Nevertheless, often the forwarding state must be computed
for each switching element because the forwarding state
entries (i.e., flow entries) include components local or spe-
cific to the switching element (e.g., specific ports of the
switching element). This per-element computation require-
ment may result in computational overhead that makes the
computational requirements grow quickly enough to render
the centralized computation of the forwarding state signifi-
cantly more difficult. In particular, irrespective of the logical
ports present in a switching element, one can assume that the
forwarding state for a single switching element is of complex-
ity O(N), where N is the number of logical ports the particular
LDPS has in total. As the size of the LDPS grows, N increases
(i.e., the load introduced by a single switching element
increases), as does the number of switching elements, and the
size of the state that has to be recomputed grows. Together,
this implies the resulting state complexity will be approxi-
mately O(N?), which is clearly undesirable from an efficiency
point of view as it may require a large amount of computa-
tional resources. As N grows large enough, this may result in
a computational load that becomes very difficult to meet by
the centralized controller instances.

In some embodiments, two factors exist that require per-
element computation of forwarding state for a LDPS. First,
the forwarding state itself may be uniquely specific to a
switching element. For instance, a particular switching ele-
ment may have completely different forwarding hardware
from any other switching element in the network. Second, the
forwarding state may be artificially bound to the switching
element. For instance, the forwarding state may have to
include identifiers that are local to the switching element
(e.g., consider a forwarding entry that has to refer to a port
number which is assigned by the switching element itself).
Similarly, the forwarding state may be uniquely specific to a
switching element if the state includes dependencies to net-
work state that are location-specific. For instance, a forward-
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ing entry could refer to a multiprotocol label switching
(MPLS) label that is meaningful only at the link that is local
to the switching element.

Some embodiments of the invention provide a network
control system that removes these two sources of dependen-
cies in order to make the computation of the forwarding state
as efficient as possible at the central controller instances. The
network control system of such embodiments allows the for-
warding state for a LDPS to be computed only once and then
merely disseminated to the switching element layer. This
decouples the physical instantiation of the forwarding state
from its specification. Once the forwarding state becomes
completely decoupled from the physical instantiation, the
forwarding state becomes universal, as it can be applied at any
switching element, regardless of the switching element’s type
and location in the network.

Thus, the network control system of some embodiments
provides universal physical control plane data that enables the
control system of some embodiments to scale even when
there is a large number of managed switching elements that
implement a LDPS. Universal physical control plane data in
some embodiments abstracts common characteristics of dif-
ferent managed switching elements that implement a LDPS.
More specifically, the universal physical control plane data is
an abstraction that is used to express physical control plane
data without considering differences in the managed switch-
ing elements and/or location-specific information of the man-
aged switching elements.

As mentioned above, the control system’s virtualization
application of some embodiments converts the logical for-
warding plane data for the LDPS to the universal physical
control plane data and pushes down the universal physical
control plane data to the chassis controller of the managed
switching elements (from a logical controller through one or
more physical controllers, in some embodiments). Each chas-
sis controller of a managed switching element converts the
universal physical control plane data into the physical control
plane data that is specific to the managed switching element.
Thus, the computation to generate the physical control plane
data specific to each managed switching element is offloaded
to the managed switching element’s chassis controller. By
offloading the computation to the managed switching ele-
ment layer, the control system of some embodiments is able to
scale in order to handle a large number of managed switching
elements that implement a LDPS.

In some embodiments, the universal physical control plane
data that is pushed into the chassis controller may be different
for different groups of managed switching elements. For
instance, the universal physical control plane data that is
pushed for a first group of software switching elements (e.g.,
OVSs) that run a first version of software may be different
than the universal physical control plane data that is pushed
for a second group of software switching elements that run a
second version of the software. This is because, for example,
the formats of the universal physical control plane data that
the different versions of software can handle may be different.

In the following description of the network controllers, the
managed forwarding state is assumed to include only flow
entries. While there may be additional states (other than the
forwarding states) managed by other out-of-band means,
these additional states play less critical roles in the actual
establishing of the packet forwarding function and tend to be
more auxiliary. In addition, the realization of a LDPS itself
requires use of virtual forwarding primitives: effectively, the
physical datapath has to be sliced over the switching ele-
ments.
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Even when the flow entries are made universal by follow-
ing these principles, a small portion of flow entries may
remain that still require per-switching element computation
in some embodiments. The goal of these principles is to make
this portion sufficiently small so that the computation of
forwarding states can easily scale with larger deployments.

Similarly, the following description does not imply that the
forwarding elements will always (or even should always)
follow the principles mentioned below, but instead merely
suggests that the pushed forwarding entries (i.e., the entries
pushed from a central controller to the switching element
layer) follow these principles. Once the universal entries are
pushed to the physical switching element layer, the chassis
controller of the switching elements perform the necessary
translations to the specifics of the switching elements. Again,
when some switching elements are not able to handle univer-
sal flow entries at all, the central controller can still prepare
the flow entries completely for the switching elements (i.e.,
can customize the flow entries for the switching elements) but
with the cost of reduced scalability. Hence, the universaliza-
tion does not need to be complete throughout the flow entries,
nor throughout all the switching elements. The goal of uni-
versalization is to make the flow entries pervasive enough to
allow for scaling.

Having stated these considerations, several features (prin-
ciples) of the universal-forwarding network control system of
some embodiments will now be described. These features
include (1) making the matching entries independent of the
local state of the switching elements, (2) making actions
independent of the local state of the switching elements, (3)
reducing the burden of disseminating flow entries from the
central controller(s) to the switching elements, and (4) sim-
plitying the translation of universal state to switching element
specific forwarding state by categorizing the universal flow
entries, accounting for switching element limitations when
computing flow entries, and including metadata in the univer-
sal flow entries.

A. Header Matching

All existing packet header matching expressions are usable
in the universalization of some embodiments because, by
definition, header matching expressions do not contain any
location-specific information and only refer to a packet,
which does not change for any specific switching element that
receives the packet. However, when packets contain identifi-
ers and labels that are specific to a receiving network, the
universalization of the flow entries may not be applicable. In
such case, use of the local identifiers and labels has to be
resolved at a higher level, if such use becomes a scalability
issue.

Any scratchpad register matching expression is usable in
the universalization as long as the register is guaranteed to
exist at any switching element or the switching element can
simulate the register. The hardware limitations for the univer-
salization will be discussed further below.

When matching to an ingress port, the central controller of
some embodiments uses a location independent identifier
instead of a local port number of any sort to universalize the
forwarding state. For instance, for virtual interface (VIF) and
physical network interface card (e.g., NIC) attachments (e.g.,
VLAN attachments), a globally unique identifier (e.g., uni-
versally unique identifier (UUID)) with possible VLAN
attachment information should serve as the identifier to use in
the universal forwarding state instead of'a port number, which
is switch-specific. Also, for encapsulated traffic (i.e., tunneled
traffic, which are data packets routed according to the infor-
mation in their outer headers), the central controller should be
able to perform matching over the outer headers’ source IP
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address as well as over the tunnel type. Matching over the
tunnel type helps minimize the number of flow entries
because a flow entry is not required per traffic source. For
instance, if a central controller writes a single flow entry to
receive from each source of type X, it would result in (X*Y)
extra flow entries, assuming there are Y switching elements
for which to write such a flow entry.

B. Actions

Any packet-modifying flow actions are universal in some
embodiments. However, operations that involve ports require
special consideration. Also, actions for routing packets to a
physical port and a tunnel should not refer to any state that
may be specific to the switching element. This has two impli-
cations.

First, any identifier that refers to an existing state has to be
globally unique. A port number that is local to a switching
element is an example of an identifier that refers to an existing
state but is not globally unique. There are several different
ways for an identifier to be deemed globally unique. For
instance, an identifier is globally unique when the identifier
guarantees a statistical uniqueness. Alternatively, an identi-
fier is globally unique when it includes a network locator
(e.g., an IP address). However, an identifier that includes a
network locator may not be globally unique when there are
two different kinds of tunnels (e.g., Internet Protocol Security
(IPsec) and Generic Routing Encapsulation (GRE)) towards
the same destination. That is, using an IP address alone as a
tunnel identifier is not enough to make the identifier globally
unique because an identical IP address may be used for both
kinds of tunnels.

Second, the flow entry should contain a complete specifi-
cation of the tunnel to be created when the state does not exist
(e.g., when a tunnel should be explicitly created before any
flow entry sends a packet through the tunnel). At a minimum,
the flow entry should include the tunnel type and a destination
network locator. The flow entry may also additionally include
information about any security transformations (e.g., authen-
tication and encryption, etc.) done for the packet as well as
information about the layering relationships (e.g., the OSI
layers) of various tunnels. If the flow entry is not self-con-
tained (i.e., if the flow entry does not contain the complete
specification of the tunnel to be created), some embodiments
create the tunnel (i.e., a state) for each switching element by
other means, such as configuration protocols of Open
vSwitch (OVS). It is to be noted that physical ports are an
exception to the universalization principles.

While a forwarding entry that forwards a packet to a local
physical port may use a physical interface identifier (e.g.,
“eth0”) and a VL AN identifier in the action, forwarding a
packet to a local physical port still involves a state that is
specific to a switching element. A physical interface identifier
may be specific to a switching element because it is not
guaranteed that most of the switching elements share an iden-
tical interface name for the interface to use for a given LDPS.
A physical interface identifier may not be specific to a switch-
ing element when the network interfaces are named in such a
way that the names remain the same across switching ele-
ments. For instance, in some embodiments, the control sys-
tem exposes only a single bonded network interface to the
flow entries so that the flow entries would never get exposed
to any of the underlying differences in bonding details.

Finally, there are actions that actually result in modifying
local state at a switching element for each packet. Traditional
MAC learning is an example of modifying local state at a
switching element for each packet. The discussion above
regarding having the matching entries and actions be inde-
pendent of a local state does not apply to a local state estab-
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lished by the packets as long as the entries and actions oper-
ating on that packet’s established state can be identical across
switching elements. For instance, in some embodiments, the
following universal learning action provides the necessary
functionality for the controller to implement the learning in a
location-independent manner. This action’s input parameters
include in some embodiments (1) learning broadcast domain
identifier (e.g., 32-bit VLAN), (2) traffic source identifier (to
be learned), (3) a result to return for indicating flooding (e.g.,
a 32-bit number), and (4) a scratchpad register for writing the
result (e.g., either a source identifier or a flooding indicator).
The action’s output parameters in some embodiments include
a scratchpad register that contains the learning decision. In
some embodiments, the learning state would be updated for
any subsequent packets to be forwarded.

C. Minimizing the Dissemination Cost

Universalization of the flow entries minimizes the compu-
tational overhead at the central controller instances by remov-
ing the redundancy in computation of flow entries. However,
there is still a non-linear amount of non-universal flow entries
to be disseminated from the central location to the switching
element layer. The universal-forwarding network control sys-
tem of some embodiments provides two solutions to alleviate
the burden of disseminating such flow entries to the switching
element layer.

First, the control system reduces the transmission cost of
the flow entries. In particular, the system of some embodi-
ments optimizes on-wire encoding and representation of the
flow entries to exploit any remaining redundancy that the
universalization did not remove. For instance, the flow state is
likely to contain encapsulation entries that are seemingly
similar: if sending to logical port X1, send to IP1 using tunnel
configuration C1, and then a number of similar entries for
(X2,1P2, C2), (X3, 1P3, C3) and so on. Similarly, when flow
entries are about packet replication, the flow entries contain a
significant level of repetition in the actions. That is, these
actions could be a long sequence of a small number of actions
repeated with minor changes. Removing such redundancy
calls for special flow entries that can capture the repetitive
nature of the flow state. For instance, a base “flow template”
can be defined once and then updated with the parameter
values that are changing. Alternatively, a standard data com-
pression technique can be used to compress the flow entries.

Second, to alleviate the burden of disseminating flow
entries to the switching element layer, the control system of
some embodiments offloads the transmission of the flow
entries from controllers as much as possible. To implement
this solution, the switching elements should provide a failure
tolerant mechanism for disseminating the universal flow state
updates among the switching elements. In practice, such
implementation requires building a reliable publish/subscribe
infrastructure (e.g., multicast infrastructure) with the switch-
ing elements. In this manner, the central controllers can take
advantage of the switching elements’ ability to disseminate
any updates timely and reliably among themselves and with
little help from the central controllers.

D. Translating Universal to Element-Specific Forwarding
State

In some embodiments, the universal-forwarding control
system categorizes the universal flow entries into different
types based on type information. That is, the type information
is used to precisely categorize every flow entry according to
the entry’s high-level semantic purpose. Without the type
information, the chassis controller of the switching element
may have difficulties in performing translation of the univer-
sal flow entries into flow entries specific to the local forward-
ing plane.
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However, even with type information, the universal flow
entries may not be translated for every switching element
because of certain hardware limitations. In particular, the
forwarding hardware (e.g., ASICs) tend to come with signifi-
cant limitations which the local control plane CPU running
next to the ASIC(s) may not be able to overcome. Therefore,
the central controller that computes the universal flow entries
in some embodiments accounts for these hardware limita-
tions when computing the flow entries. Considering the hard-
ware limitations, the central controller of some embodiments
disables some high-level features provided by the LDP sets or
constrains the implementation of those high-level features by
some other means, such as placing an upper limit on them.
However, computation by factoring in the hardware limita-
tions of switching elements does not mean the computation
would become specific to a switching element. Rather, the
central controller can still remove redundancy in computation
across the switching elements because the hardware limita-
tions may be common to multiple switching elements.

In some embodiments, the network control system has the
universal flow entries include additional metadata that is not
used by the most switching elements, so that the translation of
such universal flow entries remains feasible at as many
switching elements as possible. The trade-oft between bal-
looning the state and savings computational resources in
removing redundancy in computation is something to con-
sider carefully for each flow entry type.

FIG. 27 conceptually illustrates an example architecture of
anetwork control system 2700. In particular, this figure illus-
trates generation of customized physical control plane data
from inputs by different elements of the network control
system. As shown, the network control system 2700 of some
embodiments includes an input translation controller 2705, a
logical controller 2710, physical controllers 2715 and 2720,
and three managed switching elements 2725-2735. This fig-
ure also illustrates five machines 2740-2760 that are con-
nected to the managed switching elements 2725-2735 to
exchange data between them. One of the ordinary skill in the
art will recognize that many other different combinations of
the controllers, switching elements, and machines are pos-
sible for the network control system 2700.

In some embodiments, each of the controllers in a network
control system has a full stack of different modules and inter-
faces described above by reference to FIG. 8. However, each
controller does not have to use all the modules and interfaces
in order to perform the functionalities given for the controller.
Alternatively, in some embodiments, a controller in the sys-
tem has only those modules and interfaces that are necessary
to perform the functionalities given for the controller. For
instance, the logical controller 2710 which is a master of a
LDPS does not include an input module (i.e., an input trans-
lation application) but does include the control module and
the virtualization module (i.e., a control application or a vir-
tualization application, or an integrated application) to gen-
erate universal physical control plane data from the input
logical control plane data.

Moreover, different combinations of different controllers
may be running in a same machine. For instance, the input
translation controller 2705 and the logical controller 2710
may run in the same computing device. Also, one controller
may function differently for different LDP sets. For instance,
a single controller may be a master of a first LDPS and a
master of a managed switching element that implements a
second LDPS.

The input translation controller 2705 includes an input
translation application (such as the input translation applica-
tion described above by reference to FIG. 12) that generates
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logical control plane data from the inputs received from the
user that specify a particular LDPS. The input translation
controller 2705 identifies, from the configuration data for the
system 2705, the master of the LDPS. In this example, the
master of the LDPS is the logical controller 2710. In some
embodiments, more than one controller can be masters of the
same LDPS. Also, one logical controller can be the master of
more than one LDP sets.

The logical controller 2710 is responsible for the particular
LDPS. The logical controller 2710 thus generates the univer-
sal physical control plane data from the logical control plane
data received from the input translation controller. Specifi-
cally, the control module (not shown) of the logical controller
2710 generates the logical forwarding plane data from the
received logical control plane data and the virtualization
module (not shown) of the logical controller 2710 generates
the universal physical control plane data from the logical
forwarding data.

The logical controller 2710 identifies physical controllers
that are masters of the managed switching elements that
implement the LDPS. In this example, the logical controller
2710 identifies the physical controllers 2715 and 2720
because the managed switching elements 2725-2735 are con-
figured to implement the LDPS in this example. The logical
controller 2710 sends the generated universal physical con-
trol plane data to the physical controllers 2715 and 2720.

Each physical controllers 2715 and 2720 can be a master of
one or more managed switching elements. In this example,
the physical controller 2715 is the master of two managed
switching elements 2725 and 2730 and the physical controller
2720 is the master of the managed switching element 2735.
As the master of a set of managed switching elements, the
physical controllers of some embodiments generate, from the
received universal physical control plane data, customized
physical control plane data specific for each of the managed
switching elements. Therefore, in this example, the physical
controller 2715 generates the physical control plane data
customized for each of the managed switching elements 2725
and 2730. The physical controller 2320 generates physical
control plane data customized for the managed switching
element 2735. The physical controllers send the customized
physical control data to the managed switching elements of
which the controllers are masters. In some embodiments,
multiple physical controllers can be the masters of the same
managed switching elements.

In addition to sending customized control plane data, the
physical controllers of some embodiments receive data from
the managed switching elements. For instance, a physical
controller receives configuration information (e.g., identifiers
of VIFs of a managed switching element) of the managed
switching elements. The physical controller maintains the
configuration information and also sends the information up
to the logical controllers so that the logical controllers have
the configuration information of the managed switching ele-
ments that implement the LDP sets of which the logical
controllers are masters.

Each of the managed switching elements 2725-2735 gen-
erates physical forwarding plane data from the customized
physical control plane data that the managed switching ele-
ment received. As mentioned above, the physical forwarding
plane data defines the forwarding behavior of the managed
switching element. In other words, the managed switching
element populates its forwarding table using the customized
physical control plane data. The managed switching elements
2725-2735 forward data among the machines 2740-2760
according to the forwarding tables.
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FIG. 28 conceptually illustrates an example architecture of
a network control system 2800. Like FIG. 27, this figure
illustrates generation of customized physical control plane
data from inputs by different elements of the network control
system. In contrast to the network control system 2700 in
FIG. 27, the network control system 2800 includes chassis
controllers 2825-2835. As shown, the network control system
2800 of some embodiments includes an input translation
controller 2805, a logical controller 2710, physical control-
lers 2815 and 2820, the chassis controllers 2825-2835, and
three managed switching elements 2840-2850. This figure
also illustrates five machines 2855-2875 that are connected to
the managed switching elements 2840-2850 to exchange data
between them. One of the ordinary skill in the art will recog-
nize that many other different combinations of the control-
lers, switching elements, and machines are possible for the
network control system 2800.

The input translation controller 2805 is similar to the input
translation controller 2705 in that the input translation con-
troller 2805 includes an input translation application that
generates logical control plane data from the inputs received
from the user that specify a particular LDPS. The input trans-
lation controller 2805 identifies from the configuration data
for the system 2805 the master of the LDPS. In this example,
the master of the LDPS is the logical controller 2810.

The logical controller 2810 is similar to the logical con-
troller 2810 in that the logical controller 2810 generates the
universal physical control plane data from the logical control
plane data received from the input translation controller 2805.
Thelogical controller 2810 identifies physical controllers that
are masters of the managed switching elements that imple-
ment the LDPS. In this example, the logical controller 2810
identifies the physical controllers 2815 and 2820 because the
managed switching elements 2840-2850 are configured to
implement the LDPS in this example. The logical controller
2810 sends the generated universal physical control plane
data to the physical controllers 2815 and 2820.

Like the physical controllers 2715 and 2720, each physical
controllers 2815 and 2820 can be a master of one or more
managed switching elements. In this example, the physical
controller 2815 is the master of two managed switching ele-
ments 2840 and 2845 and the physical controller 2830 is the
master of the managed switching element 2850. However, the
physical controllers 2815 and 2820 do not generate custom-
ized physical control plane data for the managed switching
elements 2840-2850. As a master of managed switching ele-
ments, the physical controller sends the universal physical
control plane data to the chassis controller that is responsible
for each managed switching element of which the physical
controller is the master. That is, the physical controller of
some embodiments identifies the chassis controllers that
interface the managed switching elements of which the physi-
cal controller is master. In some embodiments, the physical
controller identifies those chassis controllers by determining
whether the chassis controllers are subscribing to a channel of
the physical controller.

A chassis controller of some embodiments has a one-to-
one relationship with a managed switching element. The
chassis controller receives universal control plane data from
the physical controller that is the master of the managed
switching element and generates customized control plane
data specific for the managed switching element. An example
architecture of a chassis controller will be described further
below by reference to FIG. 29. The chassis controller in some
embodiments runs in the same machine in which the managed
switching element that the chassis controller manages runs
while in other embodiments the chassis controller and the
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managed switching element run in different machines. In this
example, the chassis controller 2825 and the managed switch-
ing element 2840 run in the same computing device.

Like the managed switching elements 2725-2735, each of
the managed switching elements 2840-2850 generates physi-
cal forwarding plane data from the customized physical con-
trol plane data that the managed switching element received.
The managed switching elements 2840-2850 populate their
respective forwarding tables using the customized physical
control plane data. The managed switching elements 2840-
2850 forward data among the machines 2855-2875 according
to the flow tables.

As mentioned above, a managed switching element may
implement more than one LDPS in some cases. In such cases,
the physical controller that is the master of such a managed
switching element receives universal control plane data for
each of the LDP sets. Thus, a physical controller in the net-
work control system 2800 may be functioning as an aggrega-
tion point for relaying universal control plane data for the
different LDP sets for a particular managed switching ele-
ment that implements the LDP sets to the chassis controllers.

Even though the chassis controllers illustrated in FIG. 28
are a level above the managed switching elements, the chassis
controllers typically operate at the same level as the managed
switching elements do because the chassis controllers of
some embodiments within the managed switching elements
or adjacent to the managed switching elements.

In some embodiments, a network control system can have
ahybrid of the network control systems 2700 and 2800. That
is, in this hybrid network control system, some of the physical
controllers generate customized physical control plane data
for some of the managed switching elements and some of the
physical controllers do not generate customized physical con-
trol plane data for some of the managed switching elements.
For the latter managed switching elements, the hybrid system
has chassis controllers to generate the customized physical
control plane data.

As mentioned above, a chassis controller of some embodi-
ments is a controller for managing a single managed switch-
ing element. A chassis controller of some embodiments does
not have a full stack of different modules and interfaces
described above by reference to FIG. 8. One of the module
that a chassis controller does have is a chassis control appli-
cation that generates customized physical control plane data
from universal control plane data it receives from one or more
physical controllers. FIG. 29 illustrates an example architec-
ture for a chassis control application 2900. This application
2900 uses an nlLog table mapping engine to map input tables
that contain input data tuples that represent universal control
plane data to data tuples that represent the logical forwarding
plane data. This application 2900 manages the managed
switching element 2985 in this example by exchanging data
with the managed switching element 2985. In some embodi-
ments, the application 2900 (i.e., the chassis controller) runs
in the same machine in which the managed switching element
2985 is running

As shown in FIG. 29, the chassis control application 2900
includes a set of rule-engine input tables 2910, a set of func-
tion and constant tables 2915, an importer 2920, a rules
engine 2925, a set of rule-engine output tables 2945, an
exporter 2955, a managed switching element communication
interface 2965, and a compiler 2935. This figure also illus-
trates a physical controller 2905 and a managed switching
element 2985.

The compiler 2935 is similar to the compilers 1435 in
FIGS. 14. In some embodiments, the rule-engine (RE) input
tables 2910 include tables with universal physical data and/or
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switching configurations (e.g., access control list configura-
tions, private virtual network configurations, port security
configurations, etc.) that the physical controller 2905 that is
master of the managed switching element 2985, sent to the
chassis control application 2900. The input tables 2910 also
include tables that contain physical data (i.e., non-logical
data) from the managed switching element 2985. In some
embodiments, such physical data includes data regarding the
managed switching element 2985 (e.g., customized physical
control plane data, physical forwarding data) and other data
regarding configuration of the managed switching element
2985.

The input tables 2910 are partially populated by the uni-
versal physical control plane data provided by the physical
controller 2905. The physical controller 2905 of some
embodiments receives the universal physical control plane
data from one or more logical controllers (not shown).

In addition to the input tables 2910, the virtualization appli-
cation 2900 includes other miscellaneous tables 2915 that the
rules engine 2925 uses to gather inputs for its table mapping
operations. These tables 2915 include constant tables that
store defined values for constants that the rules engine 2925
needs to perform its table mapping operations.

When the rules engine 2925 references constants, the cor-
responding value defined for the constants are actually
retrieved and used. In addition, the values defined for con-
stants in the constant table 2915 may be modified and/or
updated. In this manner, the constant tables 2915 provide the
ability to modify the value defined for constants that the rules
engine 2925 references without the need to rewrite or recom-
pile code that specifies the operation of the rules engine 2925.
The tables 2915 further include function tables that store
functions that the rules engine 2925 needs to use to calculate
values needed to populate the output tables 2945.

The rules engine 2925 performs table mapping operations
that specify one manner for implementing the LDP sets
within the managed switching element 2985. Whenever one
of'the RE input tables is modified, the rules engine performs
a set of table mapping operations that may result in the modi-
fication of one or more data tuples in one or more RE output
tables.

As shown in FIG. 29, the rules engine 2925 includes an
event processor 2922, several query plans 2927, and a table
processor 2930. In some embodiments, each query plan is a
set of join operations that are to be performed upon the occur-
rence of a modification to one of the RE input table. Such a
modification is referred to below as an input table event. Each
query plan is generated by the compiler 2935 from one
declaratory rule in the set of declarations 2940. In some
embodiments, more than one query plan is generated from
one declaratory rule as described above. In some embodi-
ments, the query plans are defined by using the nLLog declara-
tory language.

The event processor 2922 of the rules engine 2925 detects
the occurrence of each input table event. The event processor
of different embodiments detects the occurrence of an input
table event differently. In some embodiments, the event pro-
cessor registers for callbacks with the input tables for notifi-
cation of changes to the records of the input tables. In such
embodiments, the event processor 2922 detects an input table
event when it receives notification from an input table that one
of'its records has changed.

In response to a detected input table event, the event pro-
cessor 2922 (1) selects the appropriate query plan for the
detected table event, and (2) directs the table processor 2930
to execute the query plan. To execute the query plan, the table
processor 2930 in some embodiments performs the join
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operations specified by the query plan to produce one or more
records that represent one or more sets of data values from one
or more input and miscellaneous tables 2910 and 2915. The
table processor 2930 of some embodiments then (1) performs
a select operation to select a subset of the data values from the
record(s) produced by the join operations, and (2) writes the
selected subset of data values in one or more output tables
2945.

In some embodiments, the RE output tables 2945 store
both logical and physical network element data attributes.
The tables 2945 are called RE output tables as they store the
output of the table mapping operations of the rules engine
2925. In some embodiments, the RE output tables can be
grouped in several different categories. For instance, in some
embodiments, these tables can be RE input tables and/or
chassis-controller-application (CCA) output tables. A table is
an RE input table when a change in the table causes the rules
engine to detect an input event that requires the execution of
a query plan. A RE output table 2945 can also be an RE input
table 2910 that generates an event that causes the rules engine
to perform another query plan after it is modified by the rules
engine. Such an event is referred to as an internal input event,
and it is to be contrasted with an external input event, which
is an event that is caused by an RE input table modification
made by the control application 2905 via the importer 2920.
A table is a CCA output table when a change in the table
causes the exporter 2955 to export a change to the managed
switching elements or other controller instances.

The exporter 2955 detects changes to the CCA output
tables of the RE output tables 2945. The exporter of different
embodiments detects the occurrence of a CCA output table
event differently. In some embodiments, the exporter regis-
ters for callbacks with the CCA output tables for notification
of changes to the records of the CCA output tables. In such
embodiments, the exporter 2955 detects an output table event
when it receives notification from a CCA output table that one
of'its records has changed.

In response to a detected output table event, the exporter
2955 takes each modified data tuple in the modified output
tables and propagates this modified data tuple to one or more
of other controller instances (e.g., physical controller) or to
the managed switching element 2985. The exporter 2955 uses
an inter-instance communication interface (not shown) to
send the modified data tuples to the other controller instances.
This inter-instance communication interface is similar to
inter-instance communication interface described above in
that the inter-instance communication interface 1670 estab-
lishes communication channels (e.g., an RPC channel) with
other controller instances.

The exporter 2955 of some embodiments uses the managed
switching element communication interface 2965 to send the
modified data tuples to the managed switching element 2985.
The managed switching element communication interface of
some embodiments establishes two channels of communica-
tion. The managed switching element communication inter-
face establishes a first of the two channels using a switching
control protocol. One example of a switching control protocol
is the OpenFlow protocol. The Openflow protocol, in some
embodiments, is a communication protocol for controlling
the forwarding plane (e.g., forwarding tables) of a switching
element. For instance, the Opentlow protocol provides com-
mands for adding flow entries to, removing flow entries from,
and modifying flow entries in the managed switching element
2985.

The managed switching element communication interface
establishes a second of the two channels using a configuration
protocol to send configuration information. In some embodi-
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ments, configuration information includes information for
configuring the managed switching element 2985, such as
information for configuring ingress ports, egress ports, QoS
configurations for ports, etc.

The managed switching element communication interface
2965 receives updates in the managed switching element
2985 from the managed switching element 2985 over the two
channels. The managed switching element 2985 of some
embodiments sends updates to the chassis control application
when there are changes with the flow entries or the configu-
ration of the managed switching element 2985 not initiated by
the chassis control application 2900. Examples of such
changes include dropping of a machine that was connected to
a port of the managed switching element 2985, a VM migra-
tion to the managed switching element 2985, etc. The man-
aged switching element communication interface 2965 sends
the updates to the importer 2920, which will modify one or
more input tables 2910. When there is output produced by the
rules engine 2925 from these updates, the exporter 2955 will
send this output to the physical controller 2905.

FIG. 30 conceptually illustrates an example architecture of
a network control system 3000. Like FIGS. 27 and 28, this
figure illustrates generation of customized physical control
plane data from inputs by different elements of the network
control system. In contrast to the network control system
2700 in FIG. 27, the physical controller 3015 and 3020 do not
generate physical control plane data customized for the man-
aged switching elements that these physical controllers man-
age. Rather, these physical controller 3015 and 3020 gather
universal physical control plane data from the logical control-
lers and distribute these universal data to the managed switch-
ing elements. Thus, the network control system 3000 is also
different from the network control system 2800 in FIG. 28 in
that the network control system 3000 do not have chassis
controllers to generate customized physical control plane
data from universal physical control plane data. In the net-
work control system 3000, the managed switching elements
2840-2875 customize the universal physical control plane
data into physical control plane data that are specific to the
managed switching elements.

FIG. 31 illustrates an example architecture of a host 3100
on which a managed switching element 3105 runs. The man-
aged switching element 3105 receives universal control plane
data from a physical controller that is master of this managed
switching element. The host 3100 also includes a controller
daemon 3110 that generates customized physical control
plane data specific to the managed switching element 3105
from the universal control plane data. The host 3100 also
includes several VMs 3115 that use the managed switching
element 3105 to send and receive data packets.

As mentioned above, a physical controller in a network
control system of some embodiments, such as the network
control system 3000, does not customize the universal control
plane data for the managed switching elements of which the
physical controller is a master. When the network control
system does not have chassis controllers to customized the
universal control plane data for the managed switching ele-
ments, the network control system of some embodiments puts
a controller daemon in the hosts on which the managed
switching elements run so that the controller daemon can
perform the conversion of the universal control plane data
into customized control plane data specific to the switching
elements.

The managed switching element 3105 in this example is a
software switch. The managed switching element includes a
configuration database 3120 and the flow table 3125 that
includes flow entries. For simplicity of discussion, other com-

20

25

40

45

50

70

ponents (e.g., ports, forwarding tables, etc.) are not depicted
in this figure. The managed switching element 3105 of some
embodiments receives the universal physical control plane
data over two channels, a first channel using a switch control
protocol (e.g., OpenFlow) and a second channel using a con-
figuration protocol. As mentioned above, the data coming
over the first switching element includes flow entries and the
data coming over the second switching element includes con-
figuration information. The managed switching element 3105
therefore puts the universal data coming over the first channel
in the flow table 3125 and the universal data coming over the
second channel in the configuration database 3120. However,
the universal data is not written in terms of specifics of the
managed switching element. The universal data thus has to be
customized by rewriting the data in terms of the specifics of
the managed switching element.

In some embodiments, the managed switching element
3105 keeps the configuration information in terms of the
specifics of the managed switching element in the configura-
tion database 3120. The controller daemon 3110 uses this
configuration information in order to translate the universal
data stored in the configuration database 3120. For instance,
the universal data may specify a port of the managed switch-
ing element using a universal identifier. The controller dae-
mon 3110 has logic to map this universal identifier to a local
port identifier (e.g., port number) that is also stored in the
configuration database 3120. The controller daemon 3110
then uses this customized configuration information to
modify the flow entries that are written in terms of universal
data.

E. Example Use Cases

1. Tunnel Creation

FIGS. 32A and 32B illustrate an example creation of a
tunnel between two managed switching elements based on
universal control plane data. Specifically, these figures illus-
trate in four different stages 3201-3204 a series of operations
performed by different components of a network manage-
ment system 3200 in order to establish a tunnel between two
managed switching elements 3225 and 3230. These figures
also illustrate a logical switch 3205 and VMs 1 and 2. Each of
the four stages 3201-3204 shows the network control system
3200 and the managed switching elements 3225 and 3230 in
the bottom portion and a logical switch 3205 and VMs con-
nected to the logical switch 3205 in the top portion. The VM
are shown in both the top and bottom portions of each stage.

As shown in the first stage 3201, the logical switch 3205
forwards data between the VMs 1 and 2. Specifically, data
comes to or from VM 1 through a logical port 1 of the logical
switch 3205 and data comes to or from VM 2 through a logical
port 2 of the logical switch 3205. The logical switch 3205 is
implemented by the managed switching element 3225 in this
example. That is, the logical port 1 is mapped to port 3 of the
managed switching element 3225 and the logical port 2 is
mapped to port 4 of the managed switching element 3225.

The network control system 3200 in this example includes
a controller cluster 3210 and two chassis controller 3215 and
3220. The controller cluster 3210 includes input translation
controllers (not shown), logical controllers (not shown), and
physical controllers (not shown) that collectively generate
universal control plane data based on the inputs that the con-
troller cluster 3210 receives. The chassis controllers receive
the universal control plane data and customize the universal
data into physical control plane data that is specific to the
managed switching element that each chassis controller is
managing. The chassis controllers 3215 and 3220 pass the
customized physical control plane data to the managed
switching elements 3225 and 3230, respectively, so that the
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managed switching elements 3225 and 3230 can generate
physical forwarding plane data which the managed switching
elements use to forward the data between the managed
switching elements 3225 and 3230.

At the second stage 3202, an administrator of the network
that includes managed switching element 3230 creates VM 3
in the host (not shown) in which the managed switching
element 3230 runs. The administrator creates port 5 of the
managed switching element 3230 and attaches VM 3 to the
port. Upon creation of port 3, the managed switching element
3230 of some embodiments sends the information about the
newly created port to the controller cluster 3210. In some
embodiments, the information may include port number, net-
work addresses (e.g., [P and MAC addresses), transport zone
to which the managed switching element belongs, machine
attached to the port, etc. As mentioned above, this configura-
tion information goes through the chassis controller manag-
ing the managed switching element and then through physical
controllers and logical controllers all the way up to the user
that manages the logical switch 3205. To this user, a new VM
has become available to be added to the logical switch 3205
that the user is managing.

At stage 3203, the user in this example decides to use VM
3 and attaches VM 3 to the logical switch 3205. As aresult, a
logical port 6 of the logical switch 3205 is created. Data
coming to or from VM 3 therefore will go through the logical
port 6. In some embodiments, the controller cluster 3210
directs all the managed switching elements that implement
the logical switch to create a tunnel between each pair of
managed switching elements that has a pair of ports to which
apair of logical ports of the logical switch are mapped. In this
example, a tunnel can be established between managed
switching elements 3225 and 3230 to facilitate data exchange
between the logical port 1 and the logical port 6 (i.e., between
VMs 1 and 3) and between the logical port 2 and the logical
port 6 (i.e., between VMs 2 and 3). That is, data being
exchanged between port 3 of the managed switching element
3225 and port 5 of the managed switching element 3230 and
data being exchanged between port 4 of the managed switch-
ing element 3225 and port 5 of the managed switching ele-
ment 3230 can go through the tunnel established between the
managed switching elements 3225 and 3230.

A tunnel between two managed switching elements is not
needed to facilitate data exchange between the logical port 1
and the logical port 2 (i.e., between VMs 1 and 2) because the
logical port 1 and the logical port 2 are mapped onto two ports
on the same managed switching element 3225.

The third stage 3203 further shows that the controller clus-
ter 3210 sends universal physical control plane data specify-
ing instructions to create a tunnel from the managed switch-
ing element 3225 to the managed switching element 3230. In
this example, the universal physical control plane data is sent
to the chassis controller 3215, which will customize the uni-
versal physical control plane data to physical control plane
data specific to the managed switching element 3225.

The fourth stage 3204 shows that the chassis controller
3215 sends the tunnel physical control plane data that speci-
fies instructions to create a tunnel and to forward packets to
the tunnel. The managed switching element 3225 creates a
tunnel to the managed switching element 3230 based on the
customized physical control plane data. More specifically, the
managed switching element 3225 creates port 7 and estab-
lishes a tunnel (e.g., GRE tunnel) to port 8 of the managed
switching element 3230. More detailed operations to create a
tunnel between two managed switching elements will be
described below.
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FIG. 33 conceptually illustrates a process 3300 that some
embodiments perform to generate, from universal physical
control plane data, customized physical control plane data
that specifies the creation and use of a tunnel between two
managed switching element elements. In some embodiments,
the process 3300 is performed by a chassis controller that
interfaces with a managed switching element or a physical
controller that directly interfaces with a managed switching
element.

The process 3300 begins by receiving universal physical
control plane data from a logical controller or a physical
controller. In some embodiments, universal physical control
plane data have different types. One of the types of universal
physical control plane data is universal tunnel flow instruc-
tions, which specity creation of a tunnel in a managed switch-
ing element and the use of the tunnel. In some embodiments,
the universal tunnel flow instructions include information
about a port created in a managed switching element in a
network. This port is a port of a managed switching element
to which a user has mapped a logical port of the logical
switch. This port is also a destination port which the tunneled
data needs to reach. The information about the port includes
(1) a transport zone to which the managed switching element
that has the port belongs, (2) a tunnel type, which, in some
embodiments, is based on tunnel protocols (e.g., GRE, CAP-
WAP, etc.) used to build a tunnel to the managed switching
element that has the destination port, and (3) a network
address (e.g., IP address) of the managed switching element
that has the destination port (e.g., IP address of a VIF that will
function as one end of the tunnel to establish).

Next, the process 3300 determines (at 3310) whether the
received universal physical control plane data is a universal
tunnel flow instruction. In some embodiments, the universal
control plane data specifies its type so that the process 3300
can determine the type of the received universal plane data.
When the process 3300 determines (at 3310) that the received
universal data is not a universal tunnel flow instruction, the
process proceeds to 3315 to process the universal control
plane data to generate customized control plane data and send
the generated data to the managed switching element that the
process 3300 is managing. The process 3300 then ends.

When the process 3300 determines (at 3310) that the
received universal control plane data is the universal tunnel
flow instructions, the process 3300 proceeds to 3320 to parse
the data to obtain the information about the destination port.
The process 3300 then determines (at 3325) whether the
managed switching element that has the destination port is in
the same transport zone in which the managed switching
element that has a source port is. The managed switching
element that has the source port is the managed switching
element that the chassis controller or the physical controller
that performs the process 3300 manages. In some embodi-
ments, a transport zone includes a group of machines that can
communicate with each other without using a second-level
managed switching element such as a pool node.

When the process 3300 determines (at 3325) that the man-
aged switching element with the source port and the managed
switching element with the destination port are not in the
same transport zone, the process 3300 proceeds to 3315,
which is described above. Otherwise, the process proceeds to
3330 to customize the universal tunnel flow instructions and
send the customized information to the managed switching
element that has the source port. Customizing the universal
tunnel flow instructions will be described in detail below. The
process 3300 then ends.

FIG. 34 conceptually illustrates a process 3400 that some
embodiments perform to generate customized tunnel flow
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instructions and to send the customized instructions to a man-
aged switching element so that the managed switching ele-
ment can create a tunnel and send the data to a destination
through the tunnel. In some embodiments, the process 3400 is
performed by a controller instance that interfaces with a man-
aged switching element or a physical controller that directly
interfaces with a managed switching element. The process
3400 in some embodiments starts when the controller that
performs the process 3400 has received universal tunnel flow
instructions, parsed the port information about the destination
port, and determined that the managed switching element that
has the destination port is in the same transport zone as the
managed switching element that the controller manages.

The process 3400 begins by generating (at 3405) instruc-
tions for creating a tunnel port. In some embodiments, the
process 3400 generates instructions for creating a tunnel port
in the managed switching element that the controller manages
based on the port information. The instructions include, for
example, the type of tunnel to establish, and the IP address of
the NIC which will be the destination end of the tunnel. The
tunnel port of the managed switching element managed by
the controller will be the other end of the tunnel.

Next, the process 3400 sends (at 3410) the generated
instructions for creating the tunnel port to the managed
switching element that the controller manages. As mentioned
above, a chassis controller of some embodiments or a physi-
cal controller that directly interfaces with a managed switch-
ing element uses two channels to communicate with the man-
aged switching element. One channel is a configuration
channel to exchange configuration information with the man-
aged switching element and the other channel is a switch
control channel (e.g., a channel established using OpenFlow
protocol) for exchanging flow entries and event data with the
managed switching element. In some embodiments, the pro-
cess uses the configuration channel to send the generated
instructions for creating the tunnel port to the managed
switching element that the controller manages. Upon receiv-
ing the generated instructions, the managed switching ele-
ment of some embodiments creates the tunnel port in the
managed switching element and establishes a tunnel between
the tunnel port and a port of the managed switching element
that has the destination port using a tunnel protocol specified
by the tunnel type. When the tunnel port and the tunnel are
created and established, the managed switching element of
some embodiments sends the value (e.g., four) of the identi-
fier of the tunnel back to the controller instance.

The process 3400 of some embodiments then receives (at
3415) the value of the identifier of the tunnel port (e.g.,
“tunnel_port=4”) through the configuration channel. The
process 3400 then modifies a flow entry that is included in the
universal tunnel flow instructions using this received value.
This flow entry, when sent to the managed switching element,
causes the managed switching element to perform an action.
However, being universal data, this flow entry identifies the
tunnel port by a universal identifier (e.g., tunnel_port) and not
by an actual port number. For instance, this flow entry in the
received universal tunnel flow instructions may be “If
destination=destination machine’s UUID, send to tun-
nel_port.” The process 3400 modifies (at 3420) the flow entry
with the value of the identifier of the tunnel port. Specifically,
the process 3400 replaces the identifier for the tunnel port
with the actual value of the identifier that identifies the created
port. For instance, the modified flow entry would look like “If
destination=destination machine’s UUID, send to 4.”

The process 3400 then sends (at 3425) this flow entry to the
managed switching element. In some embodiments, the pro-
cess sends this flow entry to the managed switching element
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over the switch control channel (e.g., OpenFlow channel).
The managed switching element will update its flow entries
table using this flow entry. The managed switching element
from then on forwards the data headed to a destination
machine through the tunnel by sending the data to the tunnel
port. The process then ends.

FIGS. 35A and 35B conceptually illustrate in seven differ-
ent stages 3501-3507 an example operation of a chassis con-
troller 3510 that translates universal tunnel flow instructions
into customized instructions for a managed switching ele-
ment 3515 to receive and use. The chassis controller 3510 is
similar to the chassis controller 2900 described above by
reference to FIG. 29. The chassis controller 3510 is also
similar to the chassis controller 4400, which will be described
further below by reference to FIG. 44. However, for simplic-
ity of discussion, not all components of the chassis controller
3510 are shown in FIGS. 35A and 35B.

As shown, the chassis controller 3510 includes input tables
3520, a rules engine 3525, and output tables 3530, which are
similar to the input tables 2920, the rules engine 2925, and the
output tables 2945. The chassis controller 3510 manages the
managed switching element 3515. Two channels 3535 and
3540 are established between the chassis controller and the
managed switching element 3515 in some embodiment. The
channel 3535 is for exchanging configuration data (e.g., data
about creating ports, current status of the ports, queues asso-
ciated with the managed switching element, etc.). The chan-
nel 3540 is an OpenFlow channel (OpenFlow control chan-
nel) over which to exchange flow entries in some
embodiments.

The first stage 3501 shows that the chassis controller 3510
has updated the input tables 3520 using universal tunnel flow
instructions received from a physical controller (not shown).
As shown, the universal tunnel flow instructions include an
instruction 3545 for creating a tunnel and a flow entry 3550.
As shown, the instruction 3545 includes the type of the tunnel
to be created and the IP addresses of the managed switching
element that has the destination port. The flow entry 3550
specifies the action to take in terms of universal data that is not
specific to the managed switching element 3515. The rules
engine performs table mapping operations onto the instruc-
tion 3545 and the flow entry 3550.

The second stage 3502 shows the result of the table map-
ping operations performed by the rules engine 3525. An
instruction 3560 results from the instruction 3545. In some
embodiments, the instructions 3545 and 3560 may be identi-
cal while they may not be in other embodiments. For instance,
the values in the instructions 3545 and 3560 that represent the
tunnel type may be differ. The instruction 3560 includes the
IP address and the type of the tunnel to be created, among
other information that may be included in the instruction
3560. The flow entry 3550 did not trigger any table mapping
operation and thus remains in the input tables 3520.

The third stage 3503 shows that the instruction 3560 has
been pushed to the managed switching element 3515 over the
configuration channel 3535. The managed switching element
3515 creates a tunnel port and establishes a tunnel between
the managed switching element 3515 and another managed
switching element that has the destination port. One end of
the tunnel is the tunnel port created and the other end of the
tunnel is the port that is associated with the destination IP
address in some embodiments. The managed switching ele-
ment 3515 of some embodiments uses the protocol specified
by the tunnel type to establish the tunnel.

The fourth stage 3504 shows that the managed switching
element 3515 has created a tunnel port (“port 1” in this
example) and a tunnel 3570. This stage also shows that the
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managed switching element sends back the actual value of the
tunnel port identifier. The managed switching element 3515
sends this information over the configuration channel 3535 in
this example. The information goes into the input tables 3520
as input event data. The fifth stage 3505 shows that the input
tables 3520 are updated with the information from the man-
aged switching element 3515. This update triggers the rules
engine 3525 to perform table mapping operations.

The sixth stage 3506 shows the result of the table mapping
operations performed at the previous stage 3504. The output
tables 3530 now has a flow entry 3575 that specifies the action
to take in terms of information that is specific to the managed
switching element 3515. Specifically, the flow entry 3575
specifies that when a packet’s destination is the destination
port, the managed switching element 3515 should sent out the
packet through port 1. The seventh stage 3507 shows that the
flow entry 3575 has been pushed to the managed switching
element 3515, which will forward packets using the flow
entry 3575.

It is to be noted that the instruction 3545 and the data
exchanged between the chassis controller 3510 and the man-
aged switching element 3515 as shown in FIGS. 35A and 35B
are conceptual representation of the universal tunnel flow
instructions and the customized instructions and may not be
in actual expressions and formats.

Moreover, the example of FIGS. 35A and 35B is described
in terms of the operation of the chassis controller 3510. This
example is also applicable to a physical controller of some
embodiments that translate universal physical control plane
data into customized physical control plane data for the man-
aged switching elements of which the physical controller is a
master.

FIGS. 32A-35B illustrate a creation of a tunnel between
two managed edge switching elements to facilitate data
exchanges between a pair of machines (e.g., VMs) that are
using two logical ports of a logical switch. This tunnel covers
one of the possible uses of a tunnel. Many other uses of a
tunnel are possible in a network control system in some
embodiments of the invention. Example uses of a tunnel
include: (1) a tunnel between a managed edge switching
element and a pool node, (2) a tunnel between two managed
switching elements with one being an edge switching element
and the other providing an [.3 gateway service (i.e., a man-
aged switching element that is connected to a router to get
routing service at the network layer (I.3)), and (3) a tunnel
between two managed switching elements in which a logical
port and another logical port that is attached to [.2 gateway
service.

A sequence of events for creating a tunnel in each of the
three examples will now be described. For a tunnel between a
managed switching element and a pool node, the pool node is
first provisioned and then the managed switching element is
provisioned. A VM gets connected to a port of the managed
switching element. This VM is the first VM that is connected
to the managed switching element. This VM is then bound to
a logical port of a logical switch by mapping the logical port
to the port of the managed switching element. Once the map-
ping of the logical port to the port of the managed switching
element is done, a logical controller sends (e.g., via physical
controller(s)) universal tunnel flow instructions to the chassis
controller (or, to the physical controller) that interfaces the
managed switching element.

The chassis controller then instructs the managed switch-
ing element to create a tunnel to the pool node. Once the
tunnel is created, another VM that is subsequently provi-
sioned and connected to the managed switching element will
share the same tunnel to exchange data with the pool node if
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this new VM is bound to a logical port of the same logical
switch. If the new node is bound to a logical port of a different
logical switch, the logical controller will send the same uni-
versal tunnel flow instructions that was passed down when the
first VM was connected to the managed switching element.
However, the universal tunnel flow instructions will not cause
to create a new tunnel to the pool node because, for example,
a tunnel has already been created and operational.

If the established tunnel is a unidirectional tunnel, another
unidirectional tunnel is established from the pool node side.
When the logical port to which the first VM is bounded is
mapped to the port of the managed switching element, the
logical controller also sends universal tunnel flow instruc-
tions to the pool node. Based on the universal tunnel flow
instructions, a chassis controller that interfaces the pool node
will instruct the pool node to create a tunnel to the managed
switching element.

For a tunnel between a managed edge switching element
and a managed switching element providing .3 gateway ser-
vice, it is assumed that a logical switch with several VMs of a
user have been provisioned and a logical router is imple-
mented in a transport node that provides the L3 gateway
service. A logical patch port is created in the logical switch to
link the logical router to the logical switch. In some embodi-
ments, an order in which the creation of the logical patch and
provisioning of VMs do not make a difference to tunnel
creation. The creation of the logical patch port causes a logi-
cal controller to send universal tunnel flow instructions to the
chassis controllers (or, physical controllers) interfacing all
the managed switching elements that implement the logical
switch (i.e., all the managed switching elements that each has
at least one port to which a logical port of the logical switch is
mapped). Each chassis controller for each of these managed
switching elements instructs the managed switching element
to create a tunnel to the transport node. The managed switch-
ing elements each creates a tunnel to the transport node,
resulting in as many tunnels as the number of the managed
switching elements that implement the logical switch.

If these tunnels are unidirectional, the transport node is to
create a tunnel to each of the managed switching elements
that implement the logical switch. The logical switch pushes
universal tunnel flow instructions to the transport node when
the logical patch port is created and connected to the logical
router. A chassis controller interfacing the transport node
instructs the transport node to create tunnels and the transport
node creates tunnels to the managed switching elements.

In some embodiments, a tunnel established between two
managed switching elements can be used for data exchange
between any machine attached to one of the managed switch-
ing element and any machine attached to the other managed
switching element, regardless of whether these two machines
are using logical ports of the same logical switch or of two
different switches. That is one example case where tunneling
enables different users that are managing different LDP sets
to share the managed switching elements while being iso-
lated.

A creation of a tunnel between two managed switching
elements in which a logical port and another logical port that
is attached to L2 gateway service starts when a logical port
gets attached to 1.2 gateway service. The attachment causes
the logical controller to send out universal tunnel flow instruc-
tions to all the managed switching elements that implement
other logical ports of the logical switch. Based on the instruc-
tions, tunnels are established from these managed switching
elements to a managed switching element that implements
the logical port attached to [.2 gateway service.
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2. Quality of Service

FIG. 36 illustrates an example of enabling Quality of Ser-
vice (QoS) for a logical port of a logical switch. Specifically,
this figure illustrates the logical switch 3600 at two different
stages 3601 and 3602 to show that, after port 1 of the logical
switch is enabled for QoS, the logical switch 3600 queues
network data that comes into the logical switch 3600 through
port 1. The logical switch 3600 queues the network data in
order to provide QoS to a machine that sends the network data
to switching element 3600 through port 1. QoS in some
embodiments is a technique to apply to a particular port of a
switching element such that the switching element can guar-
antee a certain level of performance to network data that a
machine sends through the particular port. For instance, by
enabling QoS for a particular port of a switch, the switching
element guarantees a minimum bitrate and/or a maximum
bitrate to network data sent by a machine to the network
through the switch.

As shown, the logical switch 3600 includes logical ports 1
and 2. These logical ports of some embodiments can be both
ingress ports and egress ports. The logical switch 3600 also
includes forwarding tables 3605. The logical switch 3600
receives network data (e.g., packets) through the ingress ports
and routes the network data based on the logical flow entries
specified in the forwarding tables 3605 to the egress ports
3607, through which the logical switch 3600 sends out the
network data.

This figure also illustrates a Ul 3610. The UI 3610 is
provided by a user interface application that allows the user to
enter input values. The UI 3610 may be a web application, a
command line interface (CLI), or any other form of user
interface through which the user can provide inputs. This user
application of some embodiments sends the inputs in the form
of API calls to an input translation application. As mentioned
above, an input translation application of some embodiments
supports the API and sends the user input data to one or more
logical controllers. The UI 3610 of some embodiments dis-
plays the current configuration of the logical switch that the
user is managing.

VM 1 is a virtual machine that sends data to the logical
switch 3600 through port 1. That is, port 1 of the logical
switch 3600 is serving as an ingress port for VM 1. The logical
switch 3600 performs logical ingress lookups using an
ingress ACL table (not shown), which is one of forwarding
tables 3605, in order to control the data (e.g., packets) coming
through the ingress ports. For instance, the logical switch
3600 reads information stored in the header of a packet that is
received through an ingress port, looks up the matching flow
entry or entries in the ingress ACL table, and determines an
action to perform on the received packet. As described above,
a logical switch may perform further logical lookups using
other forwarding tables that are storing flow entries. Also
mentioned above, the operation of a logical switch is per-
formed by a set of managed switching elements that imple-
ment the logical switch by performing a logical processing
pipeline.

FIG. 36 also illustrates a host 3615 in the bottom of each
stage. The host 3615 in this example is a server on which VM
1 and a managed switching element 3699 runs. The host 3615
in some embodiments includes a network interface (e.g., a
network interface card (NIC) with an Ethernet port, etc.)
through which one or more VMs hosted in the host 3615 send
out packets. The managed switching element 3699 has port 3
and a tunnel port. These ports of the managed switching
element 3699 are VIFs in some embodiments. In this
example, port 1 of the logical switch 3600 is mapped to port
3 of the managed switching element 3699. The tunnel port of
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the managed switching element 3699 is mapped to the net-
work interface (i.e., PIF 1) of the host 3615.

When a logical port is enabled for QoS, the logical port
needs a logical queue to en-queue the packets that are going
into the logical switch through the logical port. In some
embodiments, the user assigns a logical queue to a logical
port. A logical queue may be created based on the inputs in
some embodiments. The user may also specify the minimum
and maximum bitrates for the queue. When enabling a logical
port for QoS, the user may then point the logical port to the
logical queue. In some embodiments, multiple logical ports
can share the same logical queue. By sharing the same logical
queue, the machines that send data to the logical switch
through these logical ports can share the minimum and maxi-
mum bitrates associated with the logical queue.

In some embodiments, the control application of a logical
controller creates a logical queue collection for the logical
port. The control application then has the logical queue col-
lection point to the logical queue. The logical port and the
logical queue collection have a one-to-one relationship in
some embodiments. However, in some embodiments, several
logical ports (and corresponding logical queue collections)
can share one logical queue. That is, the traffic coming
through these several logical ports together are guaranteed for
some level of performance specified for the logical queue.

Once a logical port points to a logical queue (once the
relationship between logical port, the logical queue collec-
tion, and the logical queue is established), a physical queue
collection and physical queue are created. The steps that lead
to the creation of a physical queue collection and a physical
queue will be described in detail further below by reference to
FIGS. 37A, 37B, 37C, 37D, 37E, 37F, and 37G.

In some embodiments, the logical queue collection and the
logical queue are mapped to a physical queue collection and
a physical queue, respectively. When the packets are coming
into the logical switch through a logical port that points to a
logical queue, the packets are actually queued in the physical
queue to which the logical queue is mapped. That is, a logical
queue is a logical concept that does not actually queue pack-
ets. Instead, a logical queue indicates that the logical port that
is associated with the logical queue is enabled for QoS.

Inthe first stage 3601, neither of the logical ports 1 and 2 of
the logical switch 3600 is enabled for QoS. The logical switch
3600 routes packets that are coming from VM 1 and VM2
through ports 1 and 2 to the egress ports 3607 without guar-
anteeing certain performance level because logical ports 1
and 2 are not enabled for QoS. On the physical side, packets
from VM 1 are sent through port 3 of the managed switching
element 3699.

In the second stage 3602, a user using the UI 3610 enables
port 1 of the logical switch 3600 for QoS by specifying
information in the box next to “port 1 in the UI 3610 in this
example. The user specifies “L.Q1” as the ID of the logical
queue to which to point port 1. The user also specifies “A” and
“B” as the minimum and maximum bitrates, respectively, of
the logical queue. “A” and “B” here represent bitrates, which
are numerical values that quantify the amount of data that the
port allows to go through per unit of time (e.g., 1,024 bit/
second, etc.).

The control application creates a logical queue according
to the specified information. The control application also
creates a logical queue collection that would be set between
port 1 and the logical queue LQ1. The logical queue LQ1
queues the packets coming into the logical switch 3600
through port 1 in order to guarantee that the packets are routed
at a bitrate between the minimum and the maximum bitrates.
For instance, the logical queue L.Q1 will hold some of the
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packets in the queue when the packets are coming into the
logical queue LQ1 through port 1 at a higher bitrate than the
maximum bitrate. The logical switch 3600 will send the pack-
ets to the egress ports 3607 at a bitrate that is lower than the
maximum bitrate (but at a higher bitrate than the minimum
bitrate). Conversely, when the packets coming through port 1
are routed at a bitrate above but close to the minimum bitrate,
the logical queue L.Q1 may prioritize the packets in the queue
such that the logical switch 3600 routes these packets first
over other packets in some embodiments.

On the physical side, the managed switching element 3615
creates a physical queue collection 3630 and a physical queue
3635 in the host 3635 and associates the physical queue
collection and the physical queue with PIF 1. A physical
queue collection of some embodiments may include more
than one physical queue in some embodiments. The physical
queue collection 3630 in this example includes physical
queue 3635. The logical queue 3625 is mapped to the physical
queue 3635 actual queuing takes place. That is, the packets
coming through port 1 of the logical switch 3600 in this
example are queued in the physical queue 3630. The physical
queue 3630 in some embodiments is implemented as a stor-
age structure for storing packets. The packets from VM 1 are
queued in the physical queue before the packets are sent out
through PIF 1 so that the packets that come in through port 3
are sent out at a bitrate between the minimum and maximum
bitrates.

FIGS. 37A, 37B, 37C, 37D, 37E, 37F, and 37G conceptu-
ally illustrate an example of enabling QoS for a port of a
logical switch. In particular, these figures illustrate in four-
teen different stages 3701-3714 that a logical controller gen-
erates universal physical control plane data for enabling QoS
for port 1 of the logical switch 3600 in FIG. 36 and a chassis
controller 3785 customizes the universal data to have the
managed switching element 3699 implement the logical
switch 3600, with QoS enabled for port 1.

The input translation application 3770, the control appli-
cation 3780, and the virtualization application 3755 are simi-
lar to the input translation application 1200, the control appli-
cation 1400, and the virtualization application 1600
described above in Section I, respectively. In this example, the
input translation application 3770 runs in an input translation
controller, and the control application 3780 and the virtual-
ization application 3755 run in a logical controller.

The first stage 3701 shows that the control application 3780
includes, input tables 3714, rules engine 3715, and an output
tables 3720, which are similar to their corresponding compo-
nents of the control application 1400 in FIG. 14. Not all
components of the control application 1400 are shown for the
control application 3780, for simplicity of discussion. This
stage also shows a UI 3721, which is similar to the U1 3610 in
FIG. 36.

In the first stage 3701, the UI 3721 displays QoS informa-
tion of ports 1 and 2 of the logical switch 3600. As indicated
by the U1 3721, the logical ports of the logical switch 3600 are
not enabled for QoS. The UI 3721 displays whether ports 1
and 2 of the logical switch 3600, which is identified by an
identifier “L.SW12,” are enabled for QoS. The unchecked
boxes in the UI 3721 indicate that ports 1 and 2 of the logical
switch 3610 are not enabled for QoS. In some embodiments,
the UI 3721 allows the user to specify a logical queue to which
to point a logical port.

Inthe second stage 3702, the user provides input to indicate
that user wishes to enable port 1 of the logical switch 3600 for
QoS. As shown, the user has checked a box next to “port 1”in
the UI 3721 and entered “L.Q1” as the logical queue ID to
which to point port 1. The user has also entered a command to
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create the logical queue with “A” and “B” as the minimum
and maximum bitrates, respectively. The input translation
application 3770 receives the user’s inputs in the form of API
calls. The input translation application 3770 translates the
user’s inputs into data that can be used by the control appli-
cation 3780 and sends the translated inputs to the control
application 3780 because the logical controller on which the
control application 3780 runs is the master of the LDPS.

In the third stage 3703, the control application 3780
receives the inputs from the input translation application
3770. Based on the received inputs, the control application
3780 modifies three input tables 3735-3737. The input table
3735 shows whether a logical port of the logical switch 3600
has a logical queue collection for the logical port. In this
example, the control application 3780 first creates a logical
queue collection identifier “LQC1” for the logical queue that
the user wants to create. The control application 3780 updates
the entry in the input table 3735 for the logical port 1 to
indicate that the logical queue collection identifier is created
and associated with the logical port 1.

Upon creation of the logical queue collection identifier for
the logical queue (i.e., for the logical port 1), the rules engine
3780 performs table mapping operations to modify the input
table 3736. The input table 3736 shows whether a logical
queue collection identifier is associated with a logical queue
identifier. The control application 3780 creates a logical
queue identifier “LQ1” as the user has specified. The control
application 3780 updates the input table 3736 to indicate the
logical queue collection identifier LQC1 is related to the
logical queue identifier LQ1.

The control application 3780 also updates the input table
3737, which has a list of logical queue identifiers of the
logical switch 3600 and each logical queue’s minimum and
the maximum bitrates. The control application 3780 creates
an entry in the input table 3737 for the logical queue LQ1
having the minimum bitrate “A” and the maximum bitrate
“B” that the user has specified. Based on the updates to the
input tables 3735-3737, the rules engine 3715 performs table
mapping operations.

The fourth stage 3704 shows the result of the table mapping
operations performed by the rules engine 3715. As shown, the
rules engine has modified and/or created an output table 3738.
The table 3738 is a table that specifies logical actions to be
performed on a packet coming into the logical switch 3600
through the logical port 1 by the logical switch 3600. The
entry 3739 of the output table 3738 indicates that logical
switch 3600 should accept the packet and set a logical queue
for the logical port 1 (i.e., associate a logical queue with the
logical port 1) if the packet has correct logical context and has
a source mac address that matches to the logical port 1’s
default MAC address. The entry 3740 of the output table 3738
indicates that the logical switch 3600 should drop the packet
if it does not match the conditions specified in the entry 3739.

The fifth stage 3705 shows that the control application has
sent the output table 3738 to the input tables 3756 of the
virtualization application 3755. Based on a function table (not
shown), the rules engine 3757 performs table mapping opera-
tions to unpack the table 3738. In some embodiments,
unpacking a table means specifying a physical action (i.e., an
action that a managed switching element, which has a port to
which the logical port is mapped, is to perform) for each
logical action specified in the table. The table 3741 shows the
unpacked logical actions of the table 3738. The entry 3742
specifies that the matching physical action for setting a logi-
cal queue is setting a physical queue with the minimum and
maximum bitrates “A” and “B.” The entry 3743 specifies that
setting context to the next context (i.e., moving to the next
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operation of the logical processing pipeline) is the matching
physical action of the logical accept action. The entry 3744
specifies that the managed switching element should drop the
packet when the logical switch’s action is dropping the
packet.

Once unpacking is done, the rules engine 3755 performs
table mapping actions to pack the unpacked table. In some
embodiments, packing an unpacked table means gathering all
physical actions that match the logical actions in an entry of a
table that was originally unpacked. The sixth stage 3706
shows that the table 3746 that results from packing has an
expressions column that is identical to the expressions col-
umn of the table 3738 that was originally unpacked. Each
entry of the table 3746 includes a set of physical actions that
matches the set of logical actions specified for the corre-
sponding entry in the table 3738. Thus, the table 3746 speci-
fies all physical actions to be performed on a packet coming
into the managed switching element through the port to which
the logical port 1 is mapped. The rules engine performs table
mapping operations to generate universal flow tables.

The seventh stage 3707 shows a table 3745 which is the
result of performing the table mapping operations at the pre-
vious stage 3706. As shown, the table 3745 has three columns
for LDPS identifiers, flow types, and abstract switch identi-
fiers in addition to the table 3746. A LDPS identifier identifies
a LDPS. A flow type specifies the type of universal physical
control plane data. As mentioned above, one of the types of
universal physical control plane data is universal tunnel flow
instructions. An abstract switch identifier identifies a channel
between two controller instances. The abstract switch identi-
fiers are used to send the data only to those controller
instances that are subscribing to this channel to get the data.

The eighth stage 3708 shows a physical controller 3795,
which subscribes to the channel of the virtualization applica-
tion 3755. The virtualization application, along with the con-
trol application 3780, is running in a logical controller as
mentioned above. The table 3745 is fed into the rules engine
3782 as an input table. The rules engine 3782 performs table
mapping operations to determine whether the entries of the
table 3745 are implemented by one of the managed switching
elements of which the physical controller is a master. In this
example, the rules engine 3782 does not filter out the table
3745 and thus puts into the output tables 3783 as shown in the
ninth stage 3709.

At this stage 3709, the physical controller 3795 sends the
output table 3745 to all chassis controllers which subscribe to
a channel of the physical controller 3795 to get data from the
physical controller.

The next stage 3710 shows a chassis controller 3785 which
subscribes to a channel of the physical controller 3795. In this
example, the chassis controller 3785 manages the managed
switching element 3699. As shown, the table 3745 is fed into
the rules engine 3787 of the chassis controller 3785. The rules
engine 3787 performs table mapping operations to parse the
entries in the universal flow table 3745.

The eleventh stage 3711 shows a table 3789, which
includes entries for specifying a set of actions to be performed
by the managed switching element that has a port to which the
logical port 1 is mapped. Specifically, physical actions,
“actions before,” and “actions after” represent the operations
in a logical processing pipeline that the managed switching
element is to perform. Also, some of these actions are
expressed in terms of identifiers that are not specific to the
managed switching element that the chassis controller 3785 is
managing. In other words, the entries in the table 3789 have
not been customized by the chassis controller. The rules
engine 3787 performs table mapping operations to generate
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several requests to pass down to the managed switching ele-
ment 3699 that the chassis controller 3785 is managing. The
generated requests are shown in the next stage 3712. These
requests are in separate tables 3791 and 3792. The table 3791
includes a request to create a queue collection for the PIF 1 of
the host 3615 (not shown). The table 3792 includes a request
to create a queue with the minimum and maximum bitrates of
“A” and “B.” The chassis controller 3785 sends the requests to
the managed switching element 3699. In some embodiments,
these requests are sent over a configuration channel estab-
lished between the chassis controller 3785 and the managed
switching element 3699.

The next stage 3713 shows that the managed switching
element 3699 sends a physical queue identifier (not shown)
and a physical queue collection identifier (not shown) that are
created for a physical queue (not shown) and a physical queue
collection (not shown) that the managed switching element
3699 has created in response to the requests. This information
is sent back to the chassis controller 3785 over the configu-
ration channel in some embodiments. The chassis controller
3785 updates the input tables 3791 and 3792 based on the
information received from the managed switching element
3790. In particular, the table 3794 specifies the association of
the logical queue identifier LQ1 and the physical queue iden-
tifier PQ1. The rules engine 3787 then generates flow entries
based on the unpacked flows in the table 3789 shown in stage
3711 and the input tables 3793 and 3794.

The fourteenth stage 3714 shows a table 3799 which is the
result of the table mapping operations performed at the pre-
vious stage 3713. The table 3799 includes flow entries that are
expressed in terms of the information that is specific to the
managed switching element 3699 that the chassis controller
3785 is managing. The chassis controller 3785 sends these
flow entries to the managed switching element 3699 over a
switch control channel (e.g., OpenFlow channel). The man-
aged switching element 3699 would then forward the packets
coming to the managed switching element 3699 based on the
flow entries received from the chassis controller 3785.

3. Port Security

FIG. 38 conceptually illustrates an example of enabling
port security for a logical port of alogical switch. Specifically,
this figure illustrates the logical switch 3800 at two different
stages 3801 and 3802 to show different forwarding behaviors
of'the logical switch 3800 before and after port 1 of the logical
switch 3800 is enabled for port security. Port security in some
embodiments is a technique to apply to a particular port of a
logical switch such that the network data entering and exist-
ing the logical switch through the particular port have certain
addresses that the switching element has restricted the port to
use. For instance, a switching element may restrict a particu-
lar port to a certain MAC address and/or a certain IP address.
That is, any network traffic coming in or going out through the
particular port must have the allowed addresses as either the
source or destination address. Port security may be enabled
for ports of switching elements to prevent address spoofing.

As shown, FIG. 38 illustrates that the logical switch 3800
has a set of logical ports including logical port 1. The logical
switch 3800 also includes forwarding tables 3805, which
include an ingress ACL table 3806 and an egress ACL table
among other forwarding tables. FIG. 38 also illustrates a Ul
3810, which is similar to the Ul 3610 in FIG. 36.

VM1 is a virtual machine that sends and receives network
data to and from the logical switch 3800 through port 1. That
is, port 1 of the logical switch 3800 is serving both as an
ingress port and an egress port for VM1. VM1 has “A” as the
virtual machine’s MAC address. “A” represents a MAC
address in the proper MAC address format (e.g., “01:23:45:
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67:89:ab”). This MAC address is a default MAC address
assigned to VM1 when VM1 is created. An IP address is
usually not assigned to a virtual machine but a MAC address
is always assigned to a virtual machine when it is initially
created in some embodiments.

The logical switch 3800 performs logical ingress lookups
using the ingress ACL table 3806 in order to control the
network data (e.g., packets) coming through the ingress ports.
Forinstance, the logical switch 3800 reads information stored
in the header of a packet that is received through an ingress
port, looks up the matching flow entry or entries in the ingress
ACL table 3806, and determines an action to perform on the
received packet. As described above, a logical switch may
perform further logical lookups using other forwarding tables
that are storing flow entries.

In the first stage 3801, none of the logical ports of the
logical switch 3800 is enabled for port security. However, the
ingress ACL table 3806 in some embodiments specifies that
packets coming through port 1 must have a MAC address that
matches a default MAC address, which in this exampleis “B.”

In this example, the logical switch 3800 receives packets
1-3 from VM1 through port 1. Each of packets 1-3 includes in
the packet header a source MAC address and a source IP
address. Each of packets 1-3 may include other information
(e.g., destination MAC and IP addresses, etc.) that the logical
switch may use when performing logical lookups. For packet
1, the source MAC address field of the header includes a value
“B” to indicate that the MAC address of the sender of packet
1 (i.e., VM1) is “B.” Packet 1 also includes in the source IP
address field of the header the IP address of VM1a value “D”
to indicate that the IP address of VM1 is “D.” “D” represents
an [P address in the proper IP address format (e.g., an [Pv4 or
1Pv6 format, etc.). By putting “D” in packet 1 as a source IP
address, VM1 indicates that the virtual machine’s IP address
is “D.” However, VM1 may or may not have an IP address
assigned to VM.

Packet 2 includes in packet 2’s header “B” and “C” as
VM1’s MAC and IP addresses, respectively. In addition,
packet 2 includes an Address Resolution Protocol (ARP)
response with “A” and “C” as VM1’s MAC and IP addresses,
respectively. “A” represents a MAC address in the proper
MAC address format. VM1 is sending this ARP message in
response to an ARP request that asks for information about a
machine that has a certain IP address. As shown, the MAC
addresses in the header of packet 2 and in the ARP response
do not match. That is, VM1 did not use the virtual machine’s
MAC address (i.e., “B”) in the ARP response. As shown in the
stage 3801, the logical switch 3800 routes packets 1 and 2
from port 1 to the packets’ respective egress ports because
port security is not enabled and the packets 1 and 2 have
source MAC addresses that match the default MAC.

Packet 3 includes in packet 3’s header “A” and “C” as
VM1’s MAC and IP addresses, respectively. The logical
switch 3800 drops packet 3 because source MAC address of
packet 3 does not match the default MAC address “B”.

In the second stage 3802, a user using the UI 3810 enables
port 1 of the logical switch 3800 for port security by checking
the box in the U1 3810 in this example. The user also sets “B”
and “C” as the MAC and IP addresses to which a packet that
is coming in or going out through port 1 is restricted. The
ingress ACL table 3806 is modified according to the user
input. As shown, the ingress ACL table 3806 specifies that the
packets coming into the logical switch 3800 must have “B”
and “C” as the sender’s (i.e., VM1’s) MAC and IP addresses,
respectively, in the headers of the packets and in the ARP
responses if any ARP responses are included in the packets. In
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other words, VM1 cannot use a MAC address or an IP address
that is not the addresses specified in the ACL table 3806.

In the stage 3802, the logical switch 3800 receives packets
5-7 from VM1 through port 1. Packets 5-7 are similar to
packets 1-3, respectively, that the logical switch 3800
received from VM1 in the stage 3801. Packets 5-7 have the
same source MAC and IP addresses as packets 1-3, respec-
tively. The logical switch 3800 drops all three packets 5-7.
The logical switch 3800 drops packet 5 because packet 6’s
source IP address is “D” which is different than the IP address
to which a packet that is coming in through port 1 is restricted
(i.e., “C”). The logical switch 3800 drops packet 6 because
packet 6’s ARP response has “A” as a MAC address which is
different than the MAC address to which a packet that is
coming in through port 1 is restricted (i.e., “B”). The logical
switch 3800 drops packet 6 even though the packet has source
MAC and IP addresses in the header that match the addresses
to which a packet that is coming in through port 1 is restricted.
The logical switch 3800 also drops packet 7 because packet 7
includes “A” as source MAC address in the header, which is
different than the MAC address “B.”

FIGS. 39A, 39B, 39C, and 39D conceptually illustrate an
example of generating universal control plane data for
enabling port security for a port of a logical switch. Specifi-
cally, these figures illustrate in seven different stages 3901-
3907 that a control application 3900 and a virtualization
application generate universal control plane data for enabling
port security for port 1 of the logical switch 3800 described
above by reference to FIG. 38. These figures also illustrate an
input translation application 3940 and the user interface 3810.

The input translation application 3940, the control appli-
cation 3900, and the virtualization application 3930 are simi-
lar to the input translation application 1200, the control appli-
cation 1400, and the virtualization application 1600
described above in Section I, respectively. In this example, the
input translation application 3940 runs in an input translation
controller, and the control application 3900 and the virtual-
ization application 3930 run in a logical controller.

In the first stage 3901, the ports of the logical switch 3800
are not enabled for port security. As shown, the Ul 3810
displays whether the ports of the logical switch 3800, which
is identified by an identifier “L.SW08,” are enabled for port
security. The unchecked boxes in the UI 3810 indicate that
ports 1 and 2 of the logical switch 3800 are not enabled for
port security. In some embodiments, the UI 3810 allows the
user to specify one or both of the MAC and IP addresses to
which a particular port of the switching element is to be
restricted. However, in some such embodiments, the particu-
lar port of the switching element is by default restricted to a
default MAC and IP address pair.

The input table 3950 includes a list of all the logical ports
of all the logical switches that the control application 3900 is
managing. For each of the logical ports, the input table 3950
indicates whether the port is port security enabled. The table
3950 also lists MAC addresses of these logical ports. In some
embodiments, the table 3950 lists default MAC addresses of
the logical ports to which these ports are restricted by default.
The table 3950 also lists IP addresses of the logical ports. The
table 3950 is deemed “unfiltered,” meaning this table includes
all the logical ports of all the logical switches that different
users manage. The input table 3951 lists default MAC
addresses of all logical ports of all the logical switches that the
control application 3900 is managing.

Inthe second stage 3902, the user provides input to indicate
that user wishes to enable port 1 of the logical switch 3800 for
port security. As shown, the user has checked a box next to
“port 1”” in the UI 3810 and entered “B” and “C” as the MAC
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and IP addresses, respectively, to which to restrict port 1. “B”
is in the proper MAC address format and “C” is in the proper
IP address format. The input translation application 3940
receives the user’s inputs in the form of API calls. The input
translation application 3940 translates the user’s inputs into
data that can be used by the control application 3900 and
sends the translated inputs to the control application 3900
because the logical controller on which the control applica-
tion 3900 runs is the master of the LDPS that the user is
managing.

The third stage 3903 shows that the control application
3900 has updated input tables 3910 based on the inputs.
Specifically, the table 3950 is updated to indicate that the
logical port 1 is enabled for port security and is restricted to a
MAC address “B” and an IP address “C.” Based on this
update to the table 3950, the rules engine 3915 performs table
mapping operations to filter the entries of the table 3950 to
filter out entries for the logical ports of the logical switches
that the users other than the user that provided the inputs
manage. The table 3955 includes the filtered result and shows
only those logical ports of the logical switch that the user is
managing. This in turn causes the table 3960 to be updated.
The table 3960 lists only those logical ports of the logical
switch that are enabled for port security. The control applica-
tion 3900 also updates the table 3951 to replace the default
MAC address of the logical port 1 with the MAC address that
the user has specified.

The fourth stage 3904 shows a table 3965, which shows the
result of table mapping operations that the rules engine 3915
performed based on the updates to the input tables 3910. The
table 3965 specifies logical actions to be performed on a
packet coming into the logical switch 3800 through the logi-
cal port 1 by the logical switch 3800. The entry 3966 of the
output table 3965 indicates that logical switch 3800 should
accept the packet if the packet has correct logical context and
has a source mac address and a source IP address that match
the MAC and IP addresses to which the logical port 1 is
restricted. The entry 3967 indicates that logical switch 3800
should accept the packet if the packet has correct logical
context and has an ARP response with a source mac address
and a source IP address that match the MAC and IP addresses
to which the logical port 1 is restricted. The entry 3968 indi-
cates that the logical switch 3800 should drop the packet that
does not match the conditions specified in the entries 3966
and 3967.

The fifth stage 3705 shows that the control application has
sent the output table 3965 to the input tables 3972 of the
virtualization application 3930. Based on a function table (not
shown), the rules engine 3974 performs table mapping opera-
tions to unpack the table 3965. The table 3970 shows the
unpacked logical actions of the table 3965. The entry 3971
specifies that setting context to the next context (i.e., moving
to the next operation of the logical processing pipeline) is the
matching physical action of the logical accept action. The
entry 3972 specifies that the managed switching element
should drop the packet when the logical switch’s action is
dropping the packet.

Once unpacking is done, the rules engine 3974 performs
table mapping actions to pack the unpacked table. In some
embodiments, packing an unpacked table means gathering all
physical actions that match the logical actions in an entry of a
table that was originally unpacked. The sixth stage 3906
shows that the table 3975 that results from packing has an
expressions column that is identical to the expressions col-
umn of the table 3965. Each entry of the table 3975 includes
a set of physical actions that matches the set of logical actions
specified for the corresponding entry in the table 3965. Thus,
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the table 3975 specifies all physical actions to be performed
on a packet coming into the managed switching element
through the port to which the logical port 1 is mapped. The
rules engine performs table mapping operations to generate
universal flow tables.

The seventh stage 3907 shows a table 3980 which is the
result of performing the table mapping operations at the pre-
vious stage 3906. The virtualization application 3930 will
send this table 3980 to a physical controller (not shown) that
manages the managed switching elements that implement the
logical switch 3800. The physical controller will then pass
this table 3970 to each chassis controller (not shown) that
manages one of those managed switching elements in some
embodiments. The chassis controller will customize these
universal flows. However, in some embodiments, the flows
that are customized from the universal flows for enabling port
security will be identical to the universal flows.

IV. Scheduling

In computer networking, a network control plane computes
the state for packet forwarding (“forwarding state”). The
forwarding state is stored in the forwarding information base
(FIB) of a switching element (such as a router, a physical
switch, a virtual switch, etc.). The forwarding plane of the
switching element uses the stored forwarding state to process
the incoming packets at high-speed and transmit the packets
to a next-hop of the network towards the ultimate destination
of'the packet. The realization of the forwarding state compu-
tation can be either distributed or centralized in nature. When
a distributed routing model is used to compute the state, the
switching elements compute the state collectively. In con-
trast, when a centralized computational model is used to
compute the state, a single controller is responsible for com-
puting the state for a set of switching elements. These two
models have different costs and benefits.

When the network control plane (e.g., a control applica-
tion) receives an event requiring updates to the forwarding
state, the network control plane initiates the re-computation
of the state. When the state is re-computed, the network
control plane (which may be implemented by one controller
or several controllers) pushes the updated forwarding state to
the forwarding plane of the switching element(s). The time it
takes to compute and update the state is referred to as “net-
work convergence time.”

Regardless of the way the computation is performed, the
forwarding state in the forwarding plane has to be correct in
order to guarantee that the packets reach the intended desti-
nations. Any transient inconsistency of the forwarding state
during the network convergence time may cause one or more
switching elements to fail to forward the packets towards the
intended destinations and may thus result in packet loss. The
longer it takes to compute, disseminate, and apply any for-
warding state updates to the switching elements that use the
forwarding state, the longer the window for inconsistencies
will become. As the window for inconsistencies becomes
longer, the end-to-end packet communication service for the
users of the network will degrade accordingly.

For this reason, some embodiments of the invention care-
fully account for updates to the forwarding state. A network
event may require immediate actions by the control plane. For
instance, when a link carrier goes down, the control plane has
to re-compute the forwarding state to find an alternative link
(or route) towards the destinations of the packets. During the
time period after the network event occurs and before the
network has converged to the new, updated forwarding state,
the network users will experience a partial or total loss of
connectivity.
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To address the loss of connectivity issue, some embodi-
ments use “proactive preparation” processes, which have the
network control plane pre-compute alternative or backup for-
warding states for the forwarding plane based on the condi-
tions under which the control plane operates. With the alter-
native forwarding states for the forwarding plane, the
switching elements using the forwarding plane may correctly
forward the packets while the control plane is updating the
forwarding state for a network event. For instance, in the case
of'a link going down, the forwarding plane could be prepared
in advance with the alternative, backup path(s) for re-direct-
ing the packets. While proactive preparations may introduce
significant computation load for the control plane, proactive
preparations can remove the requirement of instantaneous
reaction to avoid the forwarding plane failures.

Even with proactive preparations, the network control
plane still needs to address several other issues in applying the
forwarding state updates to the forwarding plane. These
issues are addressed below. However, before addressing these
issues, the network control system of some embodiments
should be first described. Some embodiments of the invention
provide a novel network control system that is formed by one
or more controller instances for managing several managed
switching elements.

A. Localizing the State Computation in Time

Traditionally, the switching elements offer no transactional
updates for updating the forwarding state in the FIB. Even
when a centralized computation model is used, the need to
distribute the transactions might result in undue complexity
because of the distributed chassis architecture of the switch-
ing elements or the physical separation of the computational
and forwarding switching elements.

Without resorting to distributing transactions that are unde-
sirable, the network control system carefully schedules push-
ing the forwarding state updates to the managed switching
elements because the overall forwarding state for the for-
warding plane in the managed switching elements may still
remain inconsistent after a single update is pushed to the
forwarding plane. Thus, the network control system pushes
all the related updates together to minimize the window of
inconsistency and the overall experienced end-user downtime
in her networking services.

The network control system in some embodiments utilizes
the isolation of the virtualization. That is, since the network
forwarding states of individual LDP sets remain isolated from
each other, as do those of individual logical networks, the
network control system computes any updates on different
LDP sets independently. Hence, the network control system
can dedicate all the available resources to a single LDPS (or a
few LDP sets) and the datapath(s)’ state re-computation, and
thereby finishes the state computation for all the related for-
warding states faster.

Localizing the computation still offers benefits even when
the computation of the forwarding state updates takes long
enough to warrant aggregating updates to the forwarding
plane in order to minimize the experienced downtime in
packet forwarding. For instance, there will be less data to
buffer and aggregate in total, as the updates are produced only
for one LDPS, or a few LDP sets, at a time.

In this manner, the network control system effectively
delays reacting to network events for some of the LDP sets
affected by the network events. However, when the network
control system reacts to a particular event, the network con-
trol system can complete the computation of all the resulting
state updates as quickly as possible by focusing on a particu-
lar LDPS affected by the particular event. Described at a
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high-level, the network control system has to factor the net-
work virtualization when scheduling the computation of the
forwarding state updates.

B. Network Virtualization-Aware Scheduler

Ina network control system of some embodiments, a single
controller instance can be responsible for computing state
updates for several LDP sets. As with any network control
plane, the controller instance may have to re-compute and
update the forwarding state for all the affected LDP sets when
the controller instance receives an event from the user of the
controller or from the network. As discussed above, a simple
way of updating the forwarding state would be computing
updates for all affected LDP sets in parallel.

To minimize the per LDPS convergence time, some
embodiments localize the computation in time. To accom-
plish this, the controller instance of some embodiments has a
scheduler that takes a unit of virtualization (e.g., a LDPS) in
consideration in two ways. First, on an occurrence of a net-
work event, the controller instance classifies the event to
determine the LDPS that the event affects. Second, as the
computation for the event begins, the scheduler does not
preempt the computation until the computation for the event
completes (i.e., until the LDPS state converges).

In this manner, the controller instance achieves faster con-
vergence times for the given computation context. In addi-
tion, as with schedulers in general, the scheduler of the con-
troller can implement various scheduling policies to better
match certain high-level requirements. One such policy is
giving a preference to a computation that affects physical-
only forwarding state because a physical-only forwarding
state may affect multiple LDP sets and thus may be more
important than the state of any single LDPS. Another such
policy is prioritizing a given LDPS over another LDPS in
order to process a network event that affects a LDPS with a
higher priority first. The prioritization of the LDP sets may
reflect the tiered pricing structure of the provided network
services in multi-user environments.

C. Scheduling Considerations Beyond a Single Controller

The considerations of the scheduling extend beyond a
single controller instance when solutions that split the com-
putation of the forwarding state over multiple controller
instances for improved scaling are applied. For instance, a
controller instance may prepare the state in the first stage,
while in the second stage other controller instances consume
the results of the first stage. That is, each of the controller
instances computes for a slice of the overall final forwarding
state.

Similarly, the computation of the forwarding state may
span over a controller instance and several switching ele-
ments when the switching elements perform computation of
the forwarding state prepared by the controller instance. For
instance, spanning the computation of the forwarding state
may be necessary when the forwarding state is expressed in
universal physical control plane data.

In the case of a controller instance failing, the forwarding
state computation may take longer than the time it would have
taken without the failure. Therefore, any switching element or
controller instances consuming the state updates from a pre-
vious stage should not use the state updates until the initial
re-computation has converged or completed. To prevent the
use of the state updates until the convergence of the initial
re-computation, the scheduler of the state-computing control-
ler instance informs, through an out-of-band communication
channel, any consumers of the state updates about the con-
vergence for a given LDPS. By delaying the consumption and
computation of the subsequent state until the computation of
the state from the earlier stage is completed, the controller



US 9,231,882 B2

89

instances involved in the computation of the states minimize
the possible downtime for the network services.

When no controller instance fails, the state re-computing
controller instance computes state updates for one virtualiza-
tionunit (e.g., a LDPS) at a time and feeds the state updates to
any switching element or controller that consumes the state
updates. While the volume of the state updates for any given
LDPS may be relatively modest when there is no controller
instance failure, multiple controller instances at one stage of
the computation and multiple consumers of a next stage of the
computation share a communication channel. For instance,
multiple computational processes for multiple LDP sets
might operate concurrently in order to exploit all the process-
ing power of the modern multi-core CPUs.

When computations for multiple LDP sets are being per-
formed, the reach of the scheduling has to extend into the
communication channel itself. Specifically, when computa-
tions for multiple LDP sets are not being performed, the
channel sharing could introduce convergence delays as the
transmission of the state updates for a single LDPS could be
effectively preempted. This may result in an extended down-
time of the network services. To address this problem, the
scheduler factors the delays in the scheduling policy. That is,
such a policy will not start the transmission of queued updates
for a single LDPS until the computation for the LDPS has
converged. Alternatively, a policy will start the transmission
of'the updates but not preempt before the convergence occurs.

The above-described techniques for temporally localizing
the computation of forwarding state updates avoid an explicit,
heavyweight synchronization mechanism between the com-
putation processes of multiple LDP sets across network ele-
ments.

D. Schedulers and Channel Optimizers

The controllers of a network control system of some
embodiments use schedulers and/or channel optimizers to
minimize the network convergence time. A scheduler of a
controller instance in some embodiments schedules updates
to the input tables in such a manner that the nLog table
mapping engine can process updates related to a LDPS
together. A channel optimizer of some embodiments opti-
mizes the use of the channels established between controller
instances when sending updates between controller
instances.

FIG. 40 conceptually illustrates software architecture for
an input translation application 4000. The input translation
application 4000 runs in an input translation controller in
some embodiments. The input translation application 4000 is
identical with the input translation application 1200 in FIG.
12, except that the input translation application 4000 addi-
tionally includes a channel optimizer 4005.

As described above, the dispatcher 1225 sends the requests
generated by the request generator 1215 to one or more con-
troller instances. The dispatcher 1225 uses a communication
channel established with a particular controller instance by
the inter-instance communication interface 1240 to send the
requests for the particular controller. In some embodiments,
the dispatcher 1225 sends the requests as the requests arrive
from the request generator 1215. In some of these embodi-
ments, each request is sent as an RPC (remote procedure call)
over the channel. Therefore, the dispatcher would have to
make as many RPCs as the number of the requests.

In some embodiments, the channel optimizer 4005 mini-
mizes the number of RPCs by batching up the requests to be
sent over an RPC channel. Different embodiments use differ-
ent criteria to batch up the requests. For instance, the channel
optimizer 4005 of some embodiments makes an RPC only
after a certain number (e.g., 32) of requests are batched for a
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communication channel. Alternatively or conjunctively, the
channel optimizer 4005 of some embodiments batches up
requests that arrived for a certain period of time (e.g., 10
milliseconds).

FIG. 41 conceptually illustrates software architecture for a
control application 4100. The control application 4100 runs
in a controller in some embodiments. The control application
4100 is identical with the control application 1400 in FIG. 14,
except that the control application 4100 additionally includes
a scheduler 4105, an event classifier 4110, and a channel
optimizer 4115.

As described above, the importer 1420 interfaces with a
number of different sources of input event data and uses the
input event data to modify or create the input tables 1410. In
some embodiments, the importer 1420 does not modify or
create the input tables 1410 directly. Instead, the importer
1420 sends the input data to the event classifier 4110.

The event classifier 4110 receives input event data and
classifies the input event data. The event classifier 4110 of
some embodiments classifies the received input event data
according to the LDPS that the input event data affects. The
input event data affects a LDPS when the input event data is
about a change in a logical switch for the LDPS or about a
change at one or more managed switching elements that
implement the LDPS. For instance, when the LDPS specifies
atunnel established between two network elements, the input
event data that affects the LDPS are from any of the managed
switching elements that implement the tunnel. Also, when the
user specifies input event data to define or modify a logical
switch defined by LDPS data, this input event data affects the
LDPS. In some embodiments, the event classifier 4110 adds
atagto the input event data to identify the LDPS that the input
event data affects. The event classifier 4110 notifies the
scheduler of the received input event data and the classifica-
tion (e.g., the tag identifying the LDPS) of the input event
data.

The scheduler 4105 receives the input event data and the
classification from the event classifier 4110. In some embodi-
ments, the scheduler 4105 communicates with the rules
engine 1425 to find out whether the rules engine 1425 is
currently processing the input tables 1415 (i.e., whether the
rules engine 1425 is performing join operations on the input
tables 1415 to generate the output tables 1445). When the
rules engine is currently processing the input tables 1415, the
scheduler 4105 identifies the LDPS of those input tables that
are being processed by the rules engine 1425. The scheduler
4105 then determines whether the received input event data
affects the identified LDPS. When the scheduler 4105 deter-
mines that the received input event data affects the identified
LDPS, the scheduler 4105 modifies one or more input tables
1415 based on the received input event data. When the sched-
uler 4105 determines that the received input event data does
not affect the identified LDPS, the scheduler 4105 holds the
received input event data. In this manner, the scheduler 4105
allows the rules engine 1425 to process all the input event data
affecting the same LDPS together while the LDPS is being
modified or created.

When the rules engine 1425 is not currently processing the
input tables 1415, the scheduler 4105 modifies one or more
input tables 1415 based on the oldest input event data that has
been held. The scheduler 4105 will be further described
below by reference to FIGS. 45-48B.

As described above, the exporter 1455 sends the output
event data in the output tables 1445 to one or more controller
instances (e.g., when the virtualization application 1405 is
running in another controller instance). The exporter 1455
uses a communication channel established with a particular
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controller instance by an inter-instance communication inter-
face (not shown) to send the output event data for sending to
the particular controller. In some embodiments, the exporter
1455 sends the output event data as the exporter detects the
output event data in the output tables 1445. In some of these
embodiments, each output event data is sent as an RPC (re-
mote procedure call) over the channel. Therefore, the dis-
patcher would have to make as many RPCs as the number of
the output events.

In some embodiments, the channel optimizer 4115 mini-
mizes the number of RPCs by batching up the requests to be
sent over an RPC channel. Different embodiments use differ-
ent criteria to batch up the requests. For instance, the channel
optimizer 4115 of some embodiments makes an RPC only
after a certain number (e.g., 32) of requests are batched for a
communication channel. Alternatively or conjunctively, the
channel optimizer 4115 of some embodiments batches up
requests that arrived for a certain period of time (e.g., 10
milliseconds).

FIG. 42 conceptually illustrates software architecture for a
virtualization application 4200. The virtualization applica-
tion 4200 runs in a controller in some embodiments. The
virtualization application 4200 is identical with the virtual-
ization application 1600 in FIG. 16, except that the virtual-
ization application 4200 additionally includes a scheduler
4205, an event classifier 4210, and a channel optimizer 4215.

As described above, the importer 1620 interfaces with a
number of different sources of input event data and uses the
input event data to modify or create the input tables 1610. In
some embodiments, the importer 1620 does not modify or
create the input tables 1610 directly. Instead, the importer
1620 sends the input data to the event classifier 4210.

The event classifier 4210 receives input event data and
classifies the input event data. The event classifier 4210 of
some embodiments classifies the received input event data
according to the LDPS that the input event data affects. The
input event data affects a LDPS when the input event data is
about a change in a logical switch for the LDPS or about a
change at one or more managed switching elements that
implement the LDPS. For instance, when the LDPS specifies
atunnel established between two network elements, the input
event data that affects the LDPS are from any of the managed
switching elements that implement the tunnel. Also, when the
user specifies input event data to define or modify a logical
switch defined by LDPS data, this input event data affects the
LDPS. In some embodiments, the event classifier 4210 adds
atagto the input event data to identify the LDPS that the input
event data affects. The event classifier 4210 notifies the
scheduler of the received input event data and the classifica-
tion (e.g., the tag identifying the LDPS) of the input event
data.

The scheduler 4205 receives the input event data and the
classification from the event classifier 4210. In some embodi-
ments, the scheduler 4205 communicates with the rules
engine 1625 to find out whether the rules engine 1625 is
currently processing the input tables 1610 (i.e., whether the
rules engine 1625 is performing join operations on the input
tables 1610 to generate the output tables 1645). When the
rules engine is currently processing the input tables 1610, the
scheduler 4205 identifies the LDPS of those input tables that
are being processed by the rules engine 1625. The scheduler
4205 then determines whether the received input event data
affects the identified LDPS. When the scheduler 4205 deter-
mines that the received input event data aftects the identified
LDPS, the scheduler 4205 modifies one or more input tables
1610 based on the received input event data. When the sched-
uler 4205 determines that the received input event data does
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not affect the identified LDPS, the scheduler 4205 holds the
received input event data. In this manner, the scheduler 4205
allows the rules engine 1625 to process all the input event data
affecting the same LDPS together while the LDPS is being
modified or created.

When the rules engine 1625 is not currently processing the
input tables 1610, the scheduler 4205 modifies one or more
input tables 1610 based on the oldest input event data that has
been held. The scheduler 4205 will be further described
below by reference to FIGS. 45-48B.

As described above, the exporter 1655 sends the output
event data in the output tables 1615 to one or more controller
instances (e.g., a chassis controller). The exporter 1655 uses
a communication channel established with a particular con-
troller instance by an inter-instance communication interface
(not shown) to send the output event data for sending to the
particular controller. In some embodiments, the exporter
1655 sends the output event data as the exporter detects the
output event data in the output tables 1645. In some of these
embodiments, each output event data is sent as an RPC (re-
mote procedure call) over the channel. Therefore, the dis-
patcher would have to make as many RPCs as the number of
the output events.

In some embodiments, the channel optimizer 4215 mini-
mizes the number of RPCs by batching up the requests to be
sent over an RPC channel. Different embodiments use differ-
ent criteria to batch up the requests. For instance, the channel
optimizer 4215 of some embodiments makes an RPC only
after a certain number (e.g., 32) of requests are batched for a
communication channel. Alternatively or conjunctively, the
channel optimizer 4215 of some embodiments batches up
requests that arrived for a certain period of time (e.g., 10
milliseconds).

FIG. 43 conceptually illustrates software architecture for
an integrated application 4300. The integrated application
4300 runs in a controller in some embodiments. The inte-
grated application 4300 is identical with the integrated appli-
cation 2400 in FIG. 24, except that the integrated application
4300 additionally includes a scheduler 4305, an event classi-
fier 4310, and a channel optimizer 4315. The scheduler 4305,
the event classifier 4310, and the channel optimizer 4315 are
similar to the scheduler 4205 and the event classifier 4210,
and the channel optimizer 4210, respectively, described
above by reference to FIG. 42.

FIG. 44 conceptually illustrates a chassis control applica-
tion 4400. The chassis control application 4400 runs in a
controller in some embodiments. The chassis control appli-
cation 4400 is identical with the chassis control application
2900 in FIG. 29, except that the chassis control application
4400 additionally includes a scheduler 4405, and an event
classifier 4410. The scheduler 4405, and the event classifier
4410 are similar to the scheduler 4205 and the event classifier
4210, respectively, described above by reference to FIG. 42.

E. Scheduling Schemes

FIG. 45 conceptually illustrates a scheduler 4500 of some
embodiments. Specifically, this figure illustrates that the
scheduler 4500 uses buckets to determine whether to modify
one or more input tables 4530 based on the input event data
received from an event classifier 4525.

FIG. 45 illustrates the classifier 4525, the scheduler 4500,
and the input tables 4530. As shown, the scheduler 4500
includes a grouper 4505, buckets 4510, a bucket selector
4515, and a bucket processor 4520. The classifier 4525 and
the scheduler 4500 are similar to the classifiers 4110-4410
and the schedulers 4105-4405 in FIGS. 41-44, respectively.
The buckets 4510 is conceptual groupings of input event data
coming from the classifier 4525. In some embodiments, a
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bucket is associated with a LDPS. Whenever the scheduler
4500 receives input event data, the grouper 4505 places the
input event data into a bucket that is associated with a LDPS
that the input event data affects. When there is no bucket to
place the input event data, the grouper 4505 in some embodi-
ments creates a bucket and associates the bucket with the
LDPS that the input event data affects.

The bucket selector 4515 selects a bucket and designates
the selected bucket as the bucket from which the bucket
processor 4520 retrieves events. In some embodiments, the
bucket selector selects a bucket that is associated with the
LDPS that is currently being processed a rules engine (not
shown in this figure). That is, the bucket selector 4515 selects
a bucket that contains the input data that affects the LDPS that
is being processed by the rules engine.

The bucket processor 4520 in some embodiments removes
input event data for one input event from the bucket selected
by the bucket selector 4515. The bucket processor 4520
updates one or more input tables 4530 using the input event
data retrieved from the bucket so that the rules engine can
perform table mapping operations on the updated input tables
to modify the LDPS.

When the retrieved input event data is the only remaining
event data in the selected bucket, the bucket selector 4500 in
some embodiments destroys the bucket or leaves the bucket
empty. When the bucket is destroyed, the grouper 4505 re-
creates the bucket when an event data that is received at a later
point in time affects the same LDPS that was associated with
the destroyed bucket. When input event data for an input event
comes in and there is no bucket or all buckets are empty, the
grouper 4505 places the input event data in a bucket so that the
bucket processor 4520 immediately retrieves the input event
data and starts updating one or more input tables 4530.

The bucket from which input event data was removed most
recently is the current bucket for the scheduler 4500. In some
embodiments, the bucket selector 4515 does not select
another bucket until the current bucket becomes empty. When
input event data for an input event comes in while a LDPS is
currently being updated, the grouper 4505 places the input
event data into the current bucket if the input event data
affects the LDPS being modified. If the input event data does
notaffect the LDPS that is currently being modified but rather
affects another LDPS, the grouper 4505 places the input event
data into another bucket (the grouper creates this bucket if the
bucket does not exist) that is associated with the other LDPS.
In this manner, the bucket processor 4520 uses input event
data for as many input events affecting one LDPS as possible.

When the current bucket is destroyed or becomes empty,
the bucket selector 4515 designates the oldest bucket as the
current bucket. Then, the bucket processor 4520 starts using
the input event data from the new current bucket to update the
input tables 4530. In some embodiments, the oldest bucket is
a bucket that includes the oldest input event data.

Several exemplary operations of the scheduler 4500 are
now described by reference to FIGS. 46A-47B. FIGS. 46A
and 468 illustrate in three different stages 4601, 4602, and
4603 that the scheduler 4500’s processing of the input event
data 4605 for an input event. Specifically, these figures show
that the scheduler 4500 processes input event data for an event
right away without waiting for more input event data when the
scheduler 4500 has no other input event data to process. These
figures also illustrate the classifier 4525 and the input tables
4530.

Atstage 4601, the classifier sends to the scheduler 4500 the
input event data 4605 that the classifier has classified. All the
buckets 4510, including buckets 4615, 4620, and 4625, are
empty or deemed non-existent because the bucket processor
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4520 has just used the last input event data (not shown) from
the last non-empty bucket to update the input tables 4530 or
because the input event data 4605 is the first input event data
brought into the scheduler 4500 after the scheduler 4500
starts to run.

At stage 4602, the grouper 4505 places the input event data
4605 in the bucket 4615 because the bucket 4615 is associated
with a LDPS that the input event data 4605 affects. The bucket
selector 4515 selects the bucket 4615 so that the bucket pro-
cessor 4520 can take event input event data from the bucket
4615. At stage 4603, the bucket processor 4520 retrieves the
input event data 4605 and uses the input event data 4605 to
update one or more input tables 4530.

FIGS. 47A and 478 illustrate that the scheduler 4500 pro-
cesses two input event data 4705 and 4710 for two different
input events in three different stages 4701, 4702, and 4703.
These figures also illustrate the classifier 4525 and the input
tables 4530.

At stage 4701, the buckets 4510 include three buckets
4715, 4720, and 4725. In the bucket 4725, the grouper 4505
previously placed the input event data 4710. The other two
buckets 4715 and 4720 are empty. The buckets 4715-4725 are
associated with three different LDP sets. The classifier 4525
sends the input event data 4705 that the classifier has classi-
fied to the grouper 4505. The input event data 4705 affects the
LDPS that is associated with the bucket 4715. The bucket
4725 is the bucket that the bucket selector 4515 has desig-
nated as the current bucket. That is, the bucket processor 4520
is retrieving input event data from bucket 4725.

At stage 4702, the grouper 4505 places the input event data
4705 in the bucket 4715. The bucket selector 4515 does not
change designation of the current bucket from the bucket
4725. The bucket processor 4520 takes out the input event
data 4710 from the bucket 4725 and updates the input tables
4530 using the input event data 4710.

At stage 4703, the classifier 4525 has not classified another
input event data because the classifier 4525 has not received
another input event data for an input event. The bucket selec-
tor 4515 selects the bucket 4715 and designates the bucket
4715 as the new current bucket because the previous current
bucket 4725 has become empty after the input event data 4710
was taken out from the bucket 4725. The bucket processor
4520 takes out the input event data 4705 from the new current
bucket 4715 and updates the input tables 4530 using the input
event data 4705.

In addition to a scheduling scheme based on LDP sets that
has been described so far, different embodiments employ
other different scheduling schemes to determine the order in
which the input event data triggers the table mapping process.
The different scheduling schemes include (i) a priority-based
scheduling scheme, (ii) scheduling based on critical input
event data and non-critical input event data, and (iii) sched-
uling based on start and end tags (also referred to as “barriers’
in some embodiments) that may be associated with input
event data. These different scheduling schemes may be used
alone or in combination. One of ordinary skill in the art will
recognize that other scheduling schemes may be employed in
order to determine the order in which the input event data is
used to update input tables.

In the priority-based scheme, the event classifier 4525
assigns a priority level to the input event data. In some
embodiments, the event classifier 4525 attaches a tag to the
input event data to indicate the priority level for the input
event data. Usually, the event classifier 4525 assigns the same
priority level to different input event data when the different
input event data affects the same LDPS. Therefore, a bucket
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includes different input event data with the same priority level
and this priority level is the priority level for the bucket.

In some embodiments, the bucket selector 4515 designates
a bucket with the highest priority level as the current bucket.
That is, when input event data for an input event, which the
grouper 4505 places in a particular bucket other than the
current bucket, has a priority level that is higher than the
priority level of the current bucket, the particular bucket
becomes the new current bucket even if the old current bucket
had not become empty. Thus, from that instance in time, the
bucket processor 4520 uses the input event data from the new
current bucket to update the input tables 4710. In this manner,
the input event data with a higher priority level gets ahead of
the input event data with a lower priority level. When the input
event data that the scheduler 4500 receives from the event
classifier 4525 and the current bucket have the same priority
level, the bucket selector 4500 does not change the designa-
tion of the current bucket.

An example operation of the scheduler 4500 employing the
priority-based scheduling scheme will now be described by
reference to FIGS. 48A and 48B. FIGS. 48A and 48B illus-
trate that the scheduler 4500 processes input event data 4805
and 4810 for two different input events in three different
stages 4801-4803. These figures also illustrate the classifier
4525 and the input tables 4530.

At stage 4801, the buckets 4510 includes three buckets
4815, 4820, and 4825. In the bucket 4825, the grouper 4505
previously placed the input event data 4810. The input event
data 4810 has a priority level that the classifier 4525 assigned
to the input event data 4810. The other two buckets 4815 and
4820 are empty. The buckets 4815-4825 are associated with
three different LDP sets. The classifier 4525 sends the input
event data 4805 that the classifier has assigned a priority level
that is higher than the priority level of the input event data
4810. The input event data 4805 also affects the LDPS that is
associated with the bucket 4815. The bucket 4825 is desig-
nated as the current bucket, from which the bucket processor
4520 is retrieving input event data to update one or more input
tables 4530.

At stage 4802, the grouper 4505 places the input event data
4805 in the bucket 4815 because the input event data 4805
affects the same LDPS with which the bucket 4815 is asso-
ciated. The rules engine (not shown) is still performing table
mapping operations on the input tables 4530 which were
previously updated by the bucket processor 4520 using the
input event data (not shown). Thus, the input event data 4810
has not been taken out of the current bucket 4825 yet.

At stage 4803, the bucket selector 4515 designates the
bucket 4815 as the new current bucket, even though the pre-
vious current bucket 4825 has not become empty, because the
input event data 4805 has a priority level that is higher than the
priority level of the input event data 4810 that is in the bucket
4825. The bucket processor 4520 then uses the input event
data 4805, ahead of the input event data 4810, to update the
input tables 4530.

In the scheduling scheme that is based on critical and
non-critical input event data, the event classifier 4525 and the
scheduler 4500 of some embodiments operate based on criti-
cal input event data and non-critical input event data. Critical
input event data is input event data for a critical input event
that should immediately update one or more managed switch-
ing elements for proper functioning of the network elements.
For instance, a chassis (e.g., a host machine) disconnection or
connectionis acritical event. This is because a chassis may be
hosting several managed switching elements. Thus the dis-
connection or connection of the chassis means deletion or
addition of new managed switching elements for which other
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managed switching elements have to adjust to properly for-
ward data packets. Another example of a critical input event is
an event related to creation of the receiving end of a tunnel.
The receiving end of a tunnel is critical because when the
receiving end of a tunnel is not created, the packets going
towards the receiving end will be dropped.

A non-critical input event data is input event data for a
non-critical event that is not as important or critical to the
proper functioning of the network elements. For instance,
events related to testing a newly added node to see whether
the node gets all the required (logical) flows before other
nodes start sending packets to this node (else the node may
drop packets) are non-critical events. Another example of a
non-critical input data is an event related to creation of the
sending end of a tunnel.

The event classifier 4525 in some embodiments classifies
input event data based on whether the input event data is fora
critical event or a non-critical event or neither of the two kinds
of event. That is, the event classifier 4525 in some embodi-
ments attaches a tag to the input event data to indicate that the
input event data is a critical input event data or a non-critical
input event data. In some embodiments, the event classifier
4525 attaches no such tag to input event data that is neither a
critical input event data nor a non-critical input event data.
Such input data may be attached with a tag for the priority-
level and/or a tag for a LDPS so that the scheduler 4500 can
handle this input event data with other scheduling schemes
described above.

The scheduler 4500 in some embodiments immediately
uses a critical input event data to modify one or more input
tables 4530 when the scheduler 4500 receives the critical
input event data. That is, the critical input event data gets
ahead of any other input event data. On the other hand, the
scheduler 4500 uses a non-critical input event data only when
no other input event data held by the scheduler 4500 is critical
input event data or input event data that is neither critical input
event data nor non-critical input event data. A non-critical
input event data is therefore the last input event data of a set of
input event data used by the scheduler 4500.

FIGS. 49A, 49B and 49C illustrate that the scheduler 4500
of some embodiments employs several different scheduling
schemes including the scheduling scheme based on start and
end tags. FIGS. 49A, 49B and 49C illustrate that the sched-
uler 4500 processes several input event data 4930-4950 for
several different input events in six different stages 4901-
4906. These figures also illustrate the classifier 4525 and the
input tables 4530.

Inthe scheduling scheme based on start and end tags, input
event data that the event classifier 4525 receives and classifies
may have a start tag or an end tag attached to the input event
data. In some embodiments, the start tag indicates that the
input event data to which the start tag is attached is the first
input event data of a group of input event data. The end tag
indicates that the input event data to which the end tag is
attached is the last input event data of the group of input event
data. In some cases, a group of input event data is for different
input events. In other cases, a group of input event data may be
for a single input event.

In some embodiments, start tags and end tags are attached
to input event data by the origin of the input event. The start
tags and end tags are used to indicate that a group of input
event data should be processed together and to indicate that a
segment of a control data pipeline is completed so that the
next segment of the control data pipeline can be performed in
a distributed, multi-instance control system of some embodi-
ments. For example, a controller application attaches the start
tags and the end tags to the logical forwarding plane data that
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the controller application sends to a virtualization applica-
tion. As another example, a virtualization application of one
controller instance attaches these tags when the virtualization
application is sending universal physical control plane data
for a group of input events to another virtualization applica-
tion of another controller instance so that the other virtual-
ization application can recognize the end of universal physi-
cal control plane data and convert the universal physical
control plane data to customized physical control plane data.
Furthermore, in some embodiments, an origin of a group of
input event data does not send out the group unless the origin
has generated the whole group of input event data.

Insome embodiments that use start and end tags, the bucket
selector 4515 does not designate a particular bucket that
contains input event data with a start tag as the current bucket
until the grouper 4505 places another input event data with an
end tag in the particular bucket. In other words, the bucket
processor 4520 does not process a group of input event data
until the whole group of input event data is received. In some
embodiments, the bucket selector 4515 does not designate the
particular bucket even if the bucket has the highest priority
level among other buckets that each contain input event data.

An example operation of the scheduler 4500 that uses start
and end tags will now be described. At stage 4901, the buckets
4510 includes three buckets 4915, 4920, and 4925 thateach is
associated with a different LDPS. In the bucket 4925, the
grouper 4505 previously placed the input event data 4945.
The input event data 4945 has a priority level that the classi-
fier 4525 assigned to the input event data 4945. The bucket
4915 has two input event data 4935 and 4940. The input event
data 4935 and 4940 in the bucket 4915 have an assigned
priority level that is lower than the priority level assigned to
input event data 4945 in the bucket 4925. The input event data
4940 is illustrated as bold parallelogram to indicate that the
input event data 4940 has a start tag. That is, the input event
data 4940 is the first input event data of a group of input event
data. Also in the stage 4901, the classifier 4525 has classified
the input event data 4930 and sends the input event data 4930
to the scheduler 4500. The input event data 4930 has an
assigned priority level that is lower than the priority level
assigned to input event data 4935 and 4940.

At stage 4902, the bucket processor 4520 retrieves the
input event data 4945 from the bucket 4925 and updates the
input tables 4530 because the bucket 4925 is the current
bucket. The grouper 4505 places the input event data 4930 in
the bucket 4920 because the event data 4930 affects the LDPS
with which the bucket 4920 is associated. The bucket selector
4515 needs to designate a new current bucket because the old
current bucket 4925 is now empty. The bucket selector 4515
designates the bucket 4920 as the new current bucket even
though the priority level of the input event 4930 in the bucket
4920 is lower than the priority level of the input event data
4935 and 4940 in the bucket 4915. This is because input event
data that has an end tag for the group of input event data that
includes the input event data 4935 and 4940 has not arrived at
the bucket 4915 of the scheduler 4500.

At stage 4903, the bucket processor 4520 retrieves the
input event data 4930 from the bucket 4920 and updates the
input tables 4530 because the bucket 4920 is the current
bucket. At stage 4904, the classifier 4525 has classified the
input event data 4950 and sends the input event data 4950 to
the scheduler 4500. The input event data 4950, illustrated as
a bold parallelogram, has an end tag to indicate that the input
event data 4950 is the last input event data of the group of
input event data that include the input event data 4935 and
4940. The bucket selector 4515 does not designate the bucket
4915 as the current bucket even though the bucket 4915 is the
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only non-empty bucket of the buckets 4510 because the input
event data 4935 and 4940 do not make up a complete group of
input event data.

At stage 4905, the grouper 4505 places the input event data
4950 in the bucket 4915 because the input event data 4950
affects the LDPS with which the bucket 4915 is associated.
The bucket selector 4515 designates the bucket 4915 as the
new current bucket because the bucket 4515 now has a com-
plete group of input event data that consist of the input event
data 4935, 4940, and 4950. At stage 4906, the bucket proces-
sor 4520 retrieves the input event data 4940 because the input
event data 4940 is the oldest input event data in the current
bucket. The bucket processor 4520 uses the input event data
4940 to update the input tables 4530.

It is to be noted that the six different stages 4901-4906 in
FIGS. 49A, 49B and 49C, as well as any group of stages in
other figures of this application, do not necessarily represent
regular intervals of time. That is, for example, the length of
time elapsed between a pair of consecutive stages is not
necessarily the same as the length of time elapsed between
another pair of consecutive stages.

FIG. 50 conceptually illustrates a process 5000 that the
control application of some embodiments performs to clas-
sify input event data and update input tables based on the
input event data. Specifically, this figure illustrates that the
process 5000 in some embodiments employs scheduling
schemes based on LDP sets and priority levels assigned to
event input data. The process 5000 in some embodiments is
performed by an event classifier (e.g., the event classifier
4525) and a scheduler (e.g., the scheduler 4500). As shown in
FIG. 50, the process 5000 initially receives (at 5005) data
regarding an input event.

At 5010, the process 5000 classifies the received event
data. In some embodiments, the process 5000 classifies the
received event data based on a LDPS that the received event
data affects. As mentioned above, input event data affects a
LDPS when the input event data is about a change in the
logical switch specified by the LDPS or about a change at one
or more managed switching elements that implement the
LDPS. Also, input event data affects a LDPS when the input
event data is for defining or modifying the LDPS. In addition,
the process 5000 in some embodiments assigns a priority
level to the received event data.

Next, the process 5000 determines (at 5015) whether a
LDPS is being updated. In some embodiments, the process
5000 inspects the rules engine to find out whether a LDPS is
being updated by the rules engine. When the process 5000
determines (at 5015) that a LDPS is not being updated (i.e.,
when the process determines that the rules engine is not
currently processing any input tables), the process 5000 iden-
tifies (at 5016) the oldest input event data. When there is no
other input event data held, the process 5000 identifies the
received input event data as the oldest input event data.

The process 5000 then determines (5017) whether the
identified oldest input event data belongs to a group of input
event data (i.e., whether the identified oldest input event data
is in a batch of input event data that should be processed
together to improve efficiency). The process 5000 in some
embodiments determines that the identified oldest input event
databelongs to a group of input event data when the identified
oldest input event data has a start tag (or, a barrier). The
process 5000 determines that the identified oldest input event
data does not belong to a group of input event data when the
identified oldest input event data does not have a start tag.
When the process 5000 determines (5017) that the identified
oldest input event data does not belong to a group of input
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event data, the process 5000 proceeds to 5020 to update the
input tables with the identified oldest input event data.

When the process 5000 determines (5017) that the identi-
fied oldest input event data belongs to a group of event data,
the process 5000 determines (5018) whether the group of
input event data to which the identified oldest input event data
belongs is a complete group. In some embodiments, the pro-
cess 5000 determines (at 5018) that the group is complete
when there is a particular input event data that affects the
same LDPS that the identified oldest input event data affects
and that particular input event data has an end tag.

When the process 5000 determines (at 5018) that the group
of input event data to which the identified oldest input event
databelongs is a complete group, the process 5000 updates (at
5020) the input tables with the identified oldest input event
data. The process 5000 then ends. When the process 5000
determines (at 5018) that the group of input event data to
which the identified oldest input event data belongs is not a
complete group, the process 5000 proceeds to 5019 to deter-
mine whether there is another input event data that affects a
LDPS different than the LDPS that the identified oldest input
event data affects.

When the process determines (at 5019) that there is no such
other input event data, the process 5000 loops back to 5005 to
receive another input event data. When the process deter-
mines (at 5019) determines (at 5019) that there is such an
input event data, the process 5000 loops back to 5016 to
identify the oldest input event data among other input event
data that do not affect the LDPS(s) that any of the previously
identified oldest input event data affects.

When the process 5000 determines (at 5015) that a LDPS
is currently being updated, the process 5000 determines (at
5025) whether the received input event data affects the LDPS
that is being updated. In some embodiments, the input event
data includes an identifier for a LDPS that the input event data
affects. The process 5000 uses this identifier to determine
whether the input event data affects the LDPS that is being
updated.

When the process 5000 determines (at 5025) that the
received input event data affects the LDPS that is being
updated, the process 5000 proceeds to 5031, which will be
described further below. When the process 5000 determines
(at 5025) that the received input event data does not affect the
LDPS that is being updated, the process 5000 in some
embodiments determines (at 5030) whether the received
input event data has a priority level that is higher than the
priority level that was assigned to input event data that is
being used to update the LDPS.

When the process 5000 determines (at 5030) that the pri-
ority level of the received input event data is higher, the
processor proceeds to 5031, which will be described further
below. Otherwise, the process 5000 holds (at 5040) the
received input event data. That is, the process does not update
the input tables based on the received input event data. As
mentioned above, the process 5000 later uses the input event
data that is held when the rules engine of the control applica-
tion is done with updating the LDPS that is currently being
updated.

At5031, the process 5000 determines whether the received
input event data belongs to a group of input event data. In
some embodiments, the process 5000 determines that the
received input event data belongs to a group of input event
data when the received input event data has a start tag or an
end tag. When the process 5000 determines (at 5031) that the
received input event data does not belong to a group of input
event data, the process 5000 proceeds to 5035, which will be
described further below. Otherwise, the process 5000 pro-
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ceeds to 5032 to determine whether the group to which the
received input event data belongs is a complete group. The
process 5000 in some embodiments determines that the group
is complete when the received input event data has an end tag.

When the process 5000 determines (at 5032) that the group
of input event data to which the received input event data
belongs is a complete group, the process 5000 proceeds to
5035. When the process 5000 determines (at 5032) that the
group of input event data to which the received input event
data belongs is not a complete group, the process 5000 pro-
ceeds to 5040 to hold the received input event data.

After the process 5000 holds (at 5040) the received input
event data, the process 5000 goes to 5019 to determine
whether there is another input event data held that is held and
affects a LDPS different than the LDPS being updated. When
the process 5000 determines (at 5019) that there is no such
input event data, the process 5000 loops back to 5005 to
receive another input event data. When the process 5000
determines (at 5019) that three is such input event data, the
process 5000 proceeds to 5016 to identify the oldest input
event data among other input event data that do not affect the
LDPS being updated.

At 5035, the process updates the input tables with the
received input event data. When the received input event data
has an end tag, the process 5000 in some embodiments uses
the group of input event data to which the received input event
data with an end tag belongs in order to update input tables.

By updating the input tables based on the input event data
only when the input event data affects the LDPS that is being
updated and by holding the input event data otherwise, the
process 5000 effectively aggregates the input event data
based on the LDPS. That is, the process 5000 aggregates all
input event data for a LDPS that the process 5000 receives
while the LDPS is being updated so that all the input event
data for the LDPS are processed together by the rules engine
of the control application.

V. Using Transactionality

Within networks, it is the network forwarding state that
carries packets from their network entry points to their exits.
Hop-by-hop, the state makes the network elements forward a
packet to an element that is a step closer to the destination.
Clearly, computing forwarding state that is in compliance
with the configured network policies is crucial for the opera-
tion of the network: without the proper forwarding state, the
network will not deliver packets to their destinations, nor will
the forwarding be done according to the configured policies.

There are several challenges to updating the forwarding
state (i.e., migrating from a previously computed state to a
newly computed state) after the network configuration has
changed. Several solutions are described below. These solu-
tions consider the problem in two dimensions: correctness
and efficiency. That is, these solutions consider how the state
that is currently present in the network can guarantee that the
network policies are obeyed correctly, not only before and
after the update but also during the update. In terms of effi-
ciency, these solutions consider how the cost of potentially
large state updates can be minimized.

In the discussion below, the network control system
includes a centralized cluster of controllers that compute the
forwarding state for the forwarding elements, in order to
manage the network forwarding elements. Also, in the dis-
cussion below, “network policy” includes any configurational
aspects: not only security policies, but also policies regarding
how to route the network traffic, as well as any physical (or
logical) network configuration. Hence, in this discussion,
“policy” is used for anything that relates to user-configured
input.
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A. Requirement for Transactions

A packet is what the forwarding state operates over. Hence,
in the end, the only thing that matters is that a single packet is
forwarded according to a single consistent policy, and not a
mixture of states representing old and new policy. Subsequent
packets may be treated by different versions of the policy, as
long as the transition from an old version to a new version
occurs in a manner that prevents a packet from being treated
by a mixture of old and new policies.

The requirement for an atomic transition to a new policy
implies that the updates to the forwarding state have to be
transactional. However, as discussed above, it does not imply
the whole network forwarding state should be atomically
updated at the same time. In particular, the network control
system of some embodiments relaxes this requirement in two
regards:

1. For a stream of packets from a source towards one or
more destinations, it is not critical to specify at which point
the policy changes from an old one to new one. It is only
essential that no packet get forwarded according to a mixture
of'policies. Each packet should either be forwarded according
to the old policy or the new policy.

2. Similarly, the network control system of some embodi-
ments allows different policies to be transiently applied to
different streams of packets that ingress into the network at
different locations. Again, these embodiments only require
that a single packet experience only a single policy and not a
mixture of the old and new policies.

B. Implementing Transactional Updates

Given these requirements and relaxations, the implemen-
tation of these transactional updates will now be considered.
In M. Reitblatt, et al, “Updates for Software-Defined Net-
works: Change You Can Believe in!” In ACM SIGCOMM
Workshop on Hot Topics in Networks (HotNets), Cambridge,
Mass., November 2011 (the “Reitblatt article”), it has been
proposed that packets be tagged at network ingress with a
version of the forwarding state used at the ingress. Hence,
when the packet makes progress through the network, any
subsequent network element knows which version to use.
This effectively realizes transactional, network-wide updates
for any network forwarding state.

However, this approach comes with a few practical chal-
lenges. First, without assuming slicing of the network,
updates to the network have to be serialized: the whole net-
work has to be prepared for a particular version, then the
ingresses are updated to use the prepared version, and only
after that, the preparations for the next version can begin.

Second, the packet needs to have an explicit version tag and
hence enough bits somewhere in the packet headers need to
be allocated for the tag. If the network has a requirement to
operate with legacy tunneling protocols, it might be challeng-
ing to find such free bits for the tag in the headers.

Hence, the network wide ftransactional updates (as
described in the Reitblatt article), while powerful, come with
practical challenges that ideally should be avoided. Thus,
instead of this approach described in the Reitblatt article, the
network control system of some embodiments exploits place-
ment of the managed switching elements on the edge of the
network. The network control system of some embodiments
makes the logical forwarding decision (that is, a decision on
which logical port(s) should receive the packet) at the first-
hop, as described in U.S. patent application Ser. No. 13/222,
554; any subsequent steps are merely forwarding the packet
based on this forwarding decision towards the selected des-
tination.

This implies that the transactional updates across the net-
work can be split into two parts: (1) transactional updates to
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the first-hop managed switching element, and (2) transac-
tional updates to the path through the network from the first-
hop managed switching element to the last-hop managed
switching element. As long as these two can be implemented,
the global transactions can be provided: by preparing any new
required paths before updating the first-hop with the new
policies, the overall state update becomes atomic. After these
two steps, any network paths not required by the new first-hop
state configuration can be removed. The composition of
transactions to construct larger transactions will be further
described below, as this principle has other uses in the net-
work control system.

FIG. 51 conceptually illustrates an example architecture
for a network control system 5100 of some embodiments that
employs this two-step approach. Specifically, this figure illus-
trates in four different stages that updates to the managed
switching elements that implement a LDPS are sent in two
parts into two groups of managed switching elements. As
shown, the network control system 5100 includes a logical
controller 5105, physical controllers 5110 and 5015, and
managed switching elements 5120-5130.

As mentioned above, a logical controller is a master of a
LDPS and a physical controller is a master of managed
switching elements. A master of the LDPS of some embodi-
ments computes state updates (e.g., in universal control plane
data) for all managed switching elements that implement the
LDPS. A master of managed switching elements of some
embodiments receives the state updates from the masters of
LDPS and distributes the updates to those managed switching
elements that implement the LDPS. The managed switching
elements that receive the state updates may be some or all of
the managed switching elements that the master of the man-
aged switching elements manages.

In this example, the logical controller 5105 is a master of a
LDPS, which is implemented by the managed switching ele-
ments 5120-5130. The physical controllers 5110 and 5115 are
the masters of the managed switching elements 5120-5130.
At stage 5101, the logical controller 5105 receives updates
from the user (e.g., through an input translation controller,
which is not depicted in this figure) for a LDPS that the user
is managing. In this example, the updates represent a new
policy (e.g., a new QoS policy defining new allowable band-
width). The logical controller 5105 then computes the state
updates (e.g., by an nlLog engine that generates universal
control plane data from input logical control plane data). In
some embodiments, the logical controller 5105 identifies all
the managed switching elements that implement the LDPS. In
particular, for a path of a packet that will be forwarded from
a first physical port to a second physical port that are mapped
to a logical ingress port and logical egress port, respectively,
the logical controller identifies the managed switching ele-
ment that has the first physical port (i.e., the first-hop man-
aged switching element) and the managed switching element
that has the second physical port (i.e., the last-hop managed
switching element). The logical controller then categorizes
the first-hop managed switching element in one group and the
last-hop managed switching element as well as other man-
aged switching elements that are in the path of the packet in
another group.

In this example, the managed switching element 5120 is a
first-hop managed switching element identified by the logical
controller 5105 and the managed switching element 5130 is
the last-hop manage switch. The managed switching element
5125 is one of the “middle” managed and unmanaged switch-
ing elements (not shown) that forwards the packet towards the
last-hop managed switching element 5130. As shown, the
managed switching element 5120, the managed switching
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element 5130, and the middle switching elements have the
old policy. Thus, the packets coming to the first physical port
that is mapped to the logical ingress port are forwarded by
these managed switching elements based on the old policy.

Atthe second stage 5102, the logical controller 5120, using
its nlLog engine, computes the state updates for the last-hop
managed switching element 5130 and the middle switching
elements including the manage switching element 5125 and
sends the computed updates to these switching elements in a
transactional manner (e.g., by putting in barriers in the stream
of updates to the manage switching elements). In this
example, the physical controller 5115 manages these switch-
ing elements and distributes the updates to these switching
elements. As aresult, these managed switching elements have
both new and old policies while the first-hop managed switch-
ing element 5120 has only the old policy. However, because
the first-hop managed switching element 5120 operates under
the old policy, the packets coming to the first physical port
that is mapped to the logical ingress port are forwarded by the
managed switching elements 5120-5130 based on the old
policy.

At the third stage 5103, the logical controller 5105, using
its nlLog engine, computes the state updates for the first-hop
managed switching element 5120 and sends the computed
updates to the managed switching element 5120 in a transac-
tional manner. In this example, the physical controller 5110
manages the managed switching element 5120 and thus sends
the updates from the logical controller to the managed switch-
ing element 5120. The first-hop managed switching element
5120 has the new policy and the old policy and so do the
managed switching elements 5125 and 5130. The packets
coming to the first physical port that is mapped to the logical
ingress port are forwarded by the managed switching ele-
ments 5120-5130 based on the old policy or the new policy
depending on the policy applied to the packets by the first-hop
managed switching elements. In other embodiments, the logi-
cal controller 5105 may put a higher priority on the updates
for the new policy to the first-hop managed switching element
5120 so that the packets are forwarded by the new policy.

At the fourth stage 5104, the logical controller 5105 sends
instructions to the managed switching elements that imple-
ment the LDPS to remove the data for the old policy. The
managed switching elements 5120-5130 then forwards the
packets based on the new policy.

In some embodiments, the physical controllers identify the
first-hop managed switching element and hold the updates to
the first-hop managed switching elements in order to send the
updates to the middle switching elements and the last-hop
managed switching elements first. Therefore, in these
embodiments, the logical controller 5105 will compute the
updates to send to all of the managed switching elements that
implement a LDPS and then let the physical controllers 5110
and 5115 send updates to the middle and last-hop switching
elements before sending updates to the first-hop managed
switching elements. Moreover, in some embodiments, only
the edge switching elements are managed and the middle
switching elements (with an exception of pool nodes) are
unmanaged. In some such embodiments, all logical forward-
ing decisions are made in the first-hop switching elements
and the middle switching elements are used merely as fabric
for interconnecting switching elements.

Also, itis to be noted that the steps shown in the four stages
5101-5104 in FIG. 51 are shown in terms of updates for one
path defined in the LDPS. Because there may be many other
paths in a logical switch defined by a LDPS, the logical
controllers and the physical controllers have to perform the
two-step process described in terms of the four stages 5101-
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5104 for all possible paths for the LDPS. The next figure, FIG.
52, conceptually illustrates a process 5200 that some embodi-
ments perform to send the updates to the managed switching
elements for all paths defined by the LDPS. The process 5200
in some embodiments is performed by a logical controller
that is the master of a LDPS.

The process 5200 begins by receiving (at 5205) inputs from
the user. In some embodiments, the process 5200 receives the
inputs from an input translation controller, which translates
the inputs in API calls into a format (e.g., data tuples) that an
nl.og engine can process. In some cases, the inputs specify a
policy update to the LDPS.

Next, the process 5200 computes (at 5210) the updates for
the middle switching elements and the last-hop managed
switching elements for all possible paths of packets that are
defined by the LDPS. As mentioned above, any logical port
can be an ingress port and/or an egress port and therefore
there could be many paths for packets between many possible
pairs of logical ports. These logical ports are mapped to
physical ports of the managed switching elements that imple-
ment the LDPS. Hence, any of the managed switching ele-
ments that implement the LDPS could be a first-hop for one
path, a last-hop for another path, and a middle switching
element for yet another path. Therefore, the process computes
at 5210 only the updates for the managed switching elements
to function as the middle switching elements or the last-hop
managed switching elements. The process 5200 sends (at
5215) the computed (at 5210) updates to all managed switch-
ing elements that implement the logical switch.

The process 5200 then computes (at 5220) the updates for
the managed switching elements to function as the first-hop
managed switching elements. The updates computed at 5220
are for all possible paths defined by the LDPS data. The
process 5200 then sends (at 5225) these updates to all man-
aged switching elements that implement the LDPS.

Next, the process 5200 then sends (at 5225) instructions to
remove data related to the old policy to all managed switching
elements that implement the LDPS. The managed switching
elements will remove the old policy data so that the managed
switching elements forward the packets based on the new
policy specified by the received updates. The process then
ends.

In the approach described above, there is no requirement
for encoding the packets with versions of any kind. At most,
the number of required path configurations in the network
may increase while any new paths (not required by the old
configuration) are being prepared and before any old paths
(not required by the new configuration) are not yet removed.
Similarly, updating the forwarding state does not have to be
ordered globally. Only serializing the updates per first-hop
element is required. That is, if multiple first-hop elements
require state updates, their updates can proceed in parallel,
independently. Only the computation has to be transactional.

In some embodiments, the network control system might
use the approach described in the Reitblatt article for updat-
ing the network-wide state in limited cases, where the for-
warding state in the middle of the network changes enough
that the old and new paths would be mixed. For instance, this
could happen when the addressing scheme of the path labels
change between software versions (of input translation appli-
cation, control application, virtualization application, chassis
control application, etc.). For that kind of condition, the sys-
tem might want to dedicate a network-wide version bit (or a
few bits) from the beginning of the path label/address, so that
the structure of the path addressing can be changed if neces-
sary. Having said this, one should note that as long as the
label/address structure does not change, the network wide
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updates can be implemented as described above by adding
new paths and then letting the first-hop edge migrate to the
new paths after the rest of the path is ready.

C. Modeling the External Dependencies

The discussion above considered the requirements that are
to be placed on the transactionality in the system and the
implementation of transaction updates across the network
(e.g., by separating the updates to the first-hop processing
from the updates to the non-first-hop processing). The net-
work control system also has to compute the update to the
network forwarding state (e.g., universal physical control
plane data).

Clearly, before updating anything transactionally, the net-
work control system lets the UPCP computation converge
given the policy changes. As described above, the network
control system of some embodiments uses an nlog table
mapping engine to implement the network controllers of the
system. The nl.og engine in some embodiments lets the com-
putation reach its fixedpoint—that is, the nl.og engine com-
putes all the changes to the forwarding state based on the
input changes received so far.

Atthe high-level, reaching a local fixedpoint is simple: it is
sufficient to stop feeding any new updates to the computation
engine (i.e., the nlL.og engine), and to wait until the engine has
no more work to do. However, in networking, the definition of
a fixedpoint is a bit wider in its interpretation: while the
computation may reach a fixedpoint, it does not mean that the
computation reached an outcome that can be pushed further
down towards the managed switching elements. For example,
when changing the destination port of'a tunnel, the UPCP data
may only have a placeholder for the physical port that the
destination port maps to.

It turns out that the computation may depend on external
changes that have to be applied before the computation can
finish and reach a fixedpoint that corresponds to a forwarding
state that can be used and pushed down. To continue with our
example, the placeholder for the port number in the flow entry
may only be filled after setting up a tunnel port that will result
in a port number. In this case, the UPCP computation cannot
be considered finished before the dependencies to any new
external state (e.g., port numbers due to the created tunnel) are
met.

Hence, these external dependencies have to be considered
in the computation and included into the consideration of the
“fixedpoint.” That is, a fixedpoint is not reached until the
computation finishes locally and no external dependencies
are still unmet. In some embodiments, the nl.og computation
is built on adding and removing intermediate results; every
modification of the configuration or to the external state
results in additions and removals to the computed state.

In order to consider the external dependencies in the UPCP
computation, the nl.og computation engine should:

1) when a modification results in a state that should be
added before the new UPCP data can be pushed down (e.g.,
when a tunnel has to be created to complete a UPCP flow
entry), let the modification be applied immediately. The n[Log
computation engine has to consider fixedpoint unreachable
until the results (e.g., the new port number) of the modifica-
tion are returned to the nl.og computation engine.

2) when a modification results in a state that would affect
the current UPCP data (e.g., removing an old tunnel), though,
the update cannot be let through before the transaction is
committed (i.e., the new network forwarding state is imple-
mented). It should be applied only after the transaction has
been committed. Otherwise, the network forwarding could
change before the transaction is committed. Supporting
atomic modification of an external resource cannot be done
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with the above rules in place. Fortunately, most of the
resource modifications can be modeled as additions/remov-
als; for instance, in the case of changing the configuration of
a port representing a tunnel towards a particular destination,
the new configuration can be considered as a new port, co-
existing transiently with the old port.

Hence, at the high-level, the above approach builds on the
ability to add a new configuration next to the old one. In the
case of networking managed resources within the datapaths,
this is typically the case. In the case that constraints exist (say,
for some reason, two tunnels towards the same IP cannot
exist), the approach does not work and the atomicity of such
changes cannot be provided.

D. Communication Requirements
Updates

The discussion above noted that it is sufficient to compute
the updates in a transactional manner, and then push them to
the first-hop edge switching elements. Hence, in addition to
the computation, one more additional requirement is imposed
to the system: transactional communication channels.

Accordingly, in some embodiments, the communication
channel towards the switching elements (e.g., communica-
tion channels from input translation controllers to logical
controllers, from logical controllers to physical controllers,
from physical controllers to chassis controllers or managed
switching elements, and/or from chassis controllers to man-
aged switching elements) supports batching changes to units
that are applied completely or not at all. In some of these
embodiments, the communication channel only supports the
concept of the “barrier” (i.e., start and end tags), which sig-
nals the receiver regarding the end of the transaction. A
receiving controller or managed switching element merely
queues the updates until it receives a barrier as described
above. In addition, the channel has to maintain the order of the
updates that are sent over, or at least guarantee that the
updates that are sent before a barrier do not arrive at the
receiver after the barrier.

In this manner, the sending controller can simply keep
sending updates to the state as the computation makes
progress and once it determines that the fixedpoint has been
reached, it signals the receiving first-hop switching elements
about the end of the transaction. As further described below,
the communication channel in some embodiments also sup-
ports synchronous commits, so that the sending controller
knows when a transaction has been processed (computed by
reaching a fixedpoint) and pushed further down (if required).
One should note that this synchronous commit may result in
further synchronous commits internally, at the lower layers of
the network control system, in the case of nested transactions
as discussed below.

E. Nesting Transactions to Compose Distributed Transac-
tions

By separating the beginning of the network from the rest of
the network when it comes to the forwarding state updates as
described above by reference to FIGS. 51 and 52, the network
control system of some embodiments effectively creates a
nested transaction structure: one global transaction can be
considered to include two sub-transactions, one for first-hop
ports and one for non-first-hop ports. The approach remains
the same irrespective of whether the solution manages the
non-first-hop ports at the finest granularity (by knowing every
physical hop in the middle ofthe network and establishing the
required state) or assumes an external entity can establish the
connectivity across the network in a transactional manner.

In some embodiments, this generalizes to a principle that
allows for creation of basic distributed transactions from a set
of more fine-grained transactions. In particular, consider a

for Transactional
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network element that has multiple communication channels
towards the element, with each channel providing transac-
tionality but no support for transactions across the channels.
That is, the channels have no support for distributed transac-
tions. In such a situation, the very same composition approach
works here as well. None of the other channels’ state is used
as long as one of the channels that can be considered as a
primary channel gets its transaction applied. With this sort of
construction, the secondary channels can again be ‘prepared’
before the primary channel commits the transaction (just like
the non-first-hop ports were prepared before the edge com-
mitted its transaction). In this manner, the net result is a single
global transaction that gets committed as the edge transaction
gets committed.

FIG. 53 illustrates an example managed switching element
5305 to which several controllers have established several
communication channels to send updates to the managed
switching element. In particular, this figure illustrates in four
different stages 5301-5304 that the managed switching ele-
ment 5305 does not use updates received through secondary
channels until the updates from the primary channel arrives.
This figure illustrates the several controllers as a controller
cluster 5310. This figure also illustrates communication chan-
nels 5315-5325.

The controller cluster in this example includes logical and
physical controllers. The physical controllers establish the
channels 5315-5325 to the managed switching element 5305.
As the physical controllers establish the channels with the
managed switching element 5305, the physical controllers
designate one of the channels as a primary channel and the
rest of the channels as secondary channels. Different embodi-
ments make these designations differently. For instance,
some embodiments assign different priorities to different
updates sent through different channels. More specifically,
the physical controller that would have the primary channel to
the managed switching element may send the updates with
highest priority while the other physical controllers that
would have the secondary channels to the managed switching
element send the updates with lower priorities. Then the
physical controllers send the low priority updates to the man-
aged switching element over the secondary channels first and
then send the highest priority updates to the manage switch-
ing element over the primary channel. The managed switch-
ing element holds the updates with the lower priority until the
higher priority updates arrive. The managed switching ele-
ment then “commits” the updates (i.e., use the updates to
forward incoming packets) and thereby achieves an atomic
transaction.

In this example, the controller cluster 5310 designates the
channel 5315 as the primary channel and the channels 5320-
5325 as the secondary channels. At stage 5301, updates 1
(depicted as number 1 enclosed by a parallelogram) are pre-
pared and being sent to the managed switching element 5305
over the secondary channel 5320. The next stage 5302 shows
that updates 2 are prepared and being sent to the managed
switching element 5305 over another secondary channel
5325. The stage 5302 also shows that the updates 1 are stored
without being “committed” by the managed switching ele-
ment 5305. In other words, the managed switching element
5305 does not forward the packets it receives based on the
updates 1.

The third stage 5303 shows that the updates 3 are prepared
and being sent to the managed switching element 5305 over
the primary channel 5315. The stage 5303 shows that the
updates 1 and 2 are stored without being committed by the
managed switching element 5305. The fourth stage 5303
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shows that the updates 1-3 are committed by the managed
switching element 5305 upon the arrival of the updates 3.

It is to be noted that the generalization allows for nesting
the transactions to arbitrary depths, if so needed. In particular,
a transactional system may internally construct its transac-
tionality out of nested transactions. The ability to construct
the transactionality out of nested transactions comes useful
not only in the hierarchical structure that the controllers may
form, but also in considering how the switching elements may
internally provide a transactional interface for the controllers
managing the switching elements, as discussed below.

Consider the managed switching elements. The network
control system of some embodiments introduces transaction-
ality to acommunication channel without any explicit support
for transactionality in the underlying managed resource,
again by using the same principle of nesting. Consider a
(software) datapath with an easily extendable table pipeline.
Even if the flow table updates did not support transactions, it
is easy to add a stage to the front of the existing pipeline and
have a single flow entry decide which version of the state
should be used. Hence, by then updating a single flow entry
(which is transactional), the whole flow table can be updated
transactionally. The details of this approach do not have to be
exposed to the controllers above; however, eftectively there is
now a hierarchy of transactions in place.

FIGS. 54A and 54B conceptually illustrate a managed
switching element 5405 and a processing pipeline 5415 per-
formed by the managed switching element 5405 to process
and forward packets coming to the managed switching ele-
ment 5405. In particular, these figures illustrate in four dif-
ferent stages 5401-5404 an example operation of the man-
aged switching element 5405 to transition from an old version
of flow entries to a new version of flow entries. These figures
also illustrate packets 5420-5423 that represents packets
coming into the managed switching element 5405. The man-
aged switching element 5405 processes and forwards the
packets represented by the packets 5420-5423 based on flow
entries in a forwarding table 5410.

The first stage 5401 shows that the managed switching
element 5405 performs the processing pipeline 5415 based on
flow entries 1-4 in the forwarding table 5410. The flow entry
1 (depicted as an encircled number 1) specifies a version of
flow entries that the managed switching element 5405 should
be using. In this example, flow entries 2-4 have the same
version specified by the flow entry 1.

Upon receiving the packet 5420, the managed switching
element performs a version verifying operation of the pro-
cessing pipeline 5415 based on the flow entry 1. The flow
entry 1 further specifies that the packet 5420 be further pro-
cessed by the managed switching element 5405 (e.g., by
sending the packet 5420 to a dispatch port). The dispatch port
of'some embodiments allows the packet to enter the managed
switching element 5405 again so that the managed switching
element 5405 can further process the packet. The managed
switching element 5405 further processes the packet 5420
based on the flow entries 2, 3, and then 4. The managed
switching element 5405 allows the packet 5420 to re-enter the
managed switching element 5405 by sending the packet to the
dispatch port after processing the packet based on a flow
entry. The last flow entry to be processed on the packet speci-
fies that the packet be sent to the next-hop switching element
(or to the destination). Packet processing by a managed
switching element based on flow entries is described in U.S.
patent application Ser. No. 13/177,535.

The second stage 5402 shows that several new flow entries
6-8 have been added to the forwarding table 5410. In some
embodiments, the managed switching element 5405 adds
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these flow entries based on the inputs (e.g., customized physi-
cal control plane data) received from a controller cluster. In
this example, the flow entries 6-8 have a version that is newer
than the version of the flow entries 2-4 and the flow entries 6-8
specify the corresponding operations of the processing pipe-
line 5415 that the flow entries 2-4 specify, respectively. Upon
receiving the packet 5421, the managed switching element
5405 at the stage 5402 still uses flow entries 1-4 to process the
packet 5421.

The third stage 5403 shows that the managed switching
element 5405 has replaced the flow entry 1 with the flow entry
5, which specifies that the managed switching element 5405
should use the flow entries with the newer version. Upon
replacing the flow entries, the managed switching element
5405 then would use flow entries 6-8 because these entries are
the newer version of flow entries. The flow entries are thereby
updated to the newer version in a transactional manner. Upon
receiving the packet 5423, the managed switching element
5405 performs the processing pipeline 5415 based on the flow
entries 5-8. The fourth stage 5404 shows that the managed
switching element 5405 removes the flow entries 2-4.

F. Re-ordering External Input (Events) to Minimize Rate of
Updates

While a typical user-driven change to the policy configu-
ration causes a minor incremental change and this incremen-
tal change to the forwarding state can be computed efficiently,
failover conditions may cause larger input changes to the
nl.og computation engine. Consider a receiving controller,
which is configured to receive inputs from a source controller,
after the source controller crashes and a new controller sub-
sumes the source controller’s tasks. While the new controller
was a backup controller and therefore had the state pre-com-
puted, the receiving controller still has to do the failover from
the old source to a new source.

In some embodiments, the receiving controller would sim-
ply tear down all the input received from the crashed control-
ler (revert the effects of the inputs) and then feed the new
inputs from the new controller to the nl.og computation
engine even if it would be predictable that the old and new
inputs would most likely be almost identical, if not com-
pletely identical. While the transactionality of the computa-
tion would prevent any changes in the forwarding state from
being exposed before the new source activates and computa-
tion reaches its fixedpoint, the computational overhead could
be massive: the entire forwarding state would be computed
twice, first to remove the state, and then to re-establish the
state.

In some embodiments, the receiving controller identifies
the changes in the inputs from the old and new source and
would compute forwarding state changes only for the
changed inputs. This would eliminate the overhead com-
pletely. However, with transactional computation and with
the ability to reach a fixedpoint, the receiving controller of
some embodiments can achieve the same result, without iden-
tifying the difference. To achieve a gradual, efficient migra-
tion from an input source to another without identifying the
difference, the network control system simply does not start
by tearing down the inputs from the old source but instead
feeds the inputs from the new source to the computation
engine while the inputs from the old source are still being
used. The network control system then waits for the fixed-
point for the inputs from the new source, and only after that,
deletes the inputs from the old source.

By re-ordering the external inputs/events in this manner,
the nl.og computation engine of some embodiments can
detect the overlap and avoid the overhead of completely tear-
ing down the old state. (This therefore requires the nlog

10

15

20

25

30

35

40

45

50

55

60

65

110

computation engine to be clever enough to optimize away the
computation for duplicate states.) Without needing to tear
down the state from the old source, the receiving controller
does not commit the transaction until the fixedpoint from the
new source arrives. Once the fixedpoint arrives, the receiving
controller pushes any changes to the forwarding state (i.e., the
output state) due to the changed inputs to the consuming
switching elements. If the changes are significant, this
approach comes with the cost of increased transient memory
usage.

FIG. 55 conceptually illustrates an example physical con-
troller 5505 that receives inputs from a logical controller
5530. In particular, this figure illustrates in four different
stages 5501-5504 the physical controller 5505°s handling of
inputs when the logical controller 5530 fails and a logical
controller 5535 that is a back-up logical controller for the
logical controller 5530, takes over the task of computing and
sending updates to the physical controller 5505. As shown,
the physical controller 5505 includes a scheduler 5515, a
rules engine 5520, input tables 5525, and an updates reposi-
tory 5510.

The physical controller 5505 in this example runs an inte-
grated application 2405 described above by reference to FIG.
43. For simplicity of discussion, not all components (e.g., an
event classifier, a translator, an importer, an exporter, etc.) of
the physical controller 5505 are shown in FIG. 55. The input
tables 5525 and the rules engine 5520 are similar to the input
tables 2415 and the rules engine 2410 described above. The
scheduler 5515 is similar to the scheduler 4305 in FIG. 43.
The scheduler 5515 also uses the updates repository 5510 to
manage the input event data from other controllers including
the logical controller 5530. The updates repository 5510 is a
storage structure for storing the input event data that the
scheduler 5515 receives.

The first stage 5501 shows that the scheduler has stored
input event data 1 and 2 (depicted as numbers 1 and 2
enclosed by parallelograms). In this example, the scheduler
5515 does not push the event data 1 and 2 to the input tables
5525 because the scheduler 5515 has not received a barrier
that indicates a complete set of transactional inputs have
arrived from the logical controller 5530. In this example, the
input event data 1 and 2 are input event data generated and
sent to the managed switching element 5505 after the last
barrier, which defines the end of a set of transactional inputs,
is generated but before the barrier is sent to the managed
switching element 5505.

The next stage 5502 shows that the logical controller 5530
has failed and the logical controller 5535, as the back-up of
the logical controller 5530, subsumed the role of the logical
controller 5530 by sending the input event data 1 and 2. As
mentioned above, the logical controller 5535, as a back-up to
the logical 5530, has identical input event data (i.e., output
data from the perspective of these logical controllers) as the
logical 5530 does.

The third stage 5503 shows that the back-up logical con-
troller 5535 has computed and is sending input event data 3,
which contains a barrier that indicates the end of a set of input
event data. This stage also shows that the duplicates input
event data 1 and 2 are stored in the updates repository 5510
and the scheduler has not sent these duplicates to the input
tables 5525 because the barrier has not arrived yet.

The fourth stage 5504 shows that, upon receiving the input
event data 3 with the barrier, the scheduler 5515 has deleted
(deletion indicated by crossing out) input event data 1 and 2
received from the failed logical controller 5530. The sched-
uler 5515 would then update the input tables 5525 using the
input event data 1-3 so that the rules engine 5520 can detect
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the changes in the input tables 5525 and perform table map-
ping operations based on the changes.

FIG. 55 illustrates a failover example in terms of logical
controllers and physical controllers. However, one of the
ordinary skill in the art will recognize similar operations may
be performed by input translation controllers and logical con-
trollers, or physical controllers and chassis controllers when
an input translation controller sending inputs to a logical
controller fails or when a physical controller sending inputs to
a chassis controller fails.

G. Transactions in Hierarchical Forwarding State Compu-
tation

Consider a hierarchical setting where there are two or more
layers of computational elements (e.g., logical controllers
and physical controllers) feeding updates to the switching
elements that may be receiving transactional updates from
multiple controllers. In this situation, the topmost controllers
compute their updates in a transactional manner, but the con-
trollers below them may receive updates from multiple top-
most controllers; similarly, the switching elements may
receive updates from multiple second level controllers.

The transactions may flow down without any changes in
their boundaries; that is, a top-level transaction processed at
the second level controller results in a transaction fed down to
the switching elements containing only the resulting changes
of that incoming transaction from the topmost controller.
However, the consistency of the policies can be maintained
even if the transactions are aggregated on their way down
towards the switching elements. Nothing prevents the second
level controller from aggregating multiple incoming transac-
tions (possibly from different topmost controllers) into a
single transaction that is fed down to the switching elements.
It is a local decision to determine which is the proper level of
aggregation (if any). For instance, the system may implement
an approach where the transactions are not aggregated by
default at all, but in overload conditions when the number of
transactions in the queues grows, the transactions are aggre-
gated in hope of transactions (from the same source) having
overlapping changes that can cancel each other. In the wider
network context, one could consider this approach as one
kind of route flap dampening.

FIG. 56 conceptually illustrates an example physical con-
troller 5605 that receives inputs from logical controllers
5630-5635. In particular, this figure illustrates in four difter-
ent stages 5601-5604 that physical controller 5605 aggre-
gates several sets of input event data from several different
logical controllers into a single set of input event data. As
shown, the physical controller 5605 includes a scheduler
5615, a rules engine 5620, input tables 5625, and an updates
repository 5610. The physical controller 5605 in this example
runs an integrated application 2405 described above by ref-
erence to FIG. 43. For simplicity of discussion, not all com-
ponents (e.g., an event classifier, a translator, an importer, an
exporter, etc.) of the physical controller 5605 are shown in
FIG. 56.

The input tables 5625 and the rules engine 5620 are similar
to the input tables 2415 and the rules engine 2410 described
above. The scheduler 5615 is similar to the scheduler 4305 in
FIG. 43. The scheduler 5615 also uses the updates repository
5615 to manage the input event data from other controllers
including the logical controller 5630. The updates repository
5610 is a storage structure for storing the input event data that
the scheduler 5615 receives.

The scheduler 5615 of some embodiments monitors the
input tables 5625 and/or communicates with the rules engine
5620 to find out the amount of updates to the input tables 5625
that have not been processed by the rules engine 5620. Based
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on the amount of updates that have not been processed, the
scheduler 5615 determines whether to combine sets of input
event data into a single set of input event data to update the
input tables 5625. The scheduler 5615 of different embodi-
ments determine when to combine sets of input event data
differently. For instance, the scheduler 5615 uses the number
of'sets of input event data that have not been processed by the
rules engine 5620, where each set of input event data is
defined by a barrier (or start and end tags described above).
When the number of sets of input event data is over a certain
threshold value (e.g., five), the scheduler 5615 combines sev-
eral sets of input event data in the updates repository 5625 into
a single set of input event data with one barrier.

Alternatively or conjunctively, the scheduler 5615 of some
embodiments uses the data size of the input event data that
have not been processed by the rules engine 5620. In these
embodiments, the scheduler 5615 combines several set of
input event data in the updates repository 5625 into a single
set of input event before sending them to the input tables 5620
when the size of unprocessed input data in the input tables
5610 is over a threshold value (e.g., several hundreds of
bytes). One of the ordinary skills in the art would recognize
that there may be other ways to determine when to combine
sets of input data events into a single set.

The first stage 5601 shows that the scheduler 5615 has
stored input event data 1-3 (depicted as numbers 1-3 enclosed
by parallelograms) received from the logical controller 5630.
The logical controller 5630 is one of several logical control-
lers from which the physical controller 5605 receives input
event data. In this example, the input event data 3 has a barrier
(indicated by a bold parallelogram) indicating the end of a set
of input event data (e.g., one set of transactional input event
data). However, the scheduler 5615 has not pushed the event
data 1-3 to the input tables because, for example, the input
event data 1-3 does not affect the same LDPS that the rules
engine 5620 is currently processing. The stage 5601 also
shows that the logical controller 5635, which is another of the
logical controllers that send input event data to the physical
controller 5605, is sending the input event data 4-6. The input
event data 6 has a barrier (indicated by a bold parallelogram)
indicating the end of a set of input event data.

The next stage 5602 shows that two sets of input event data,
one set having the input event data 1-3 and another set having
the input event data 4-6, are stored in the updates repository
5610. However, the scheduler 5615 has not pushed the event
data 1-6 to the input tables because, for example, the input
event data 1-6 does not affect the same LDPS that the rules
engine 5620 is currently processing. Also, the scheduler 5615
pushes other event data (not shown) from other logical con-
trollers to the input tables 5625.

The third stage 5603 shows that the scheduler 5615 has
combined the input event data 1-6 into a single set of input
event data with one barrier attached to or included in the input
event data 6. In this example, the scheduler 5630 combines
the input event data 1-6 because the number of sets of input
event data that have not been processed by the rules engine
5620 is now over a threshold value (e.g., five). The fourth
stage 5604 shows that the scheduler 5630 has pushed the
input event data 1-6 together as one set of input event data to
the input tables 5620 after the rules engine 5620 has pro-
cessed the sets of input event data in the input tables 5620.

The example shown in FIG. 56 is described in terms of
logical controllers and physical controllers. However, one of
the ordinary skill in the art will recognize similar operations
may be performed by input translation controllers and logical
controllers, or physical controllers and chassis controllers
when a logical controller receives inputs from several input
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translation controllers or when a chassis controller receives
inputs from several physical controllers.

In some embodiments, the transactions can be spliced to
smaller ones. If that is to be done, the splicing controller (or
switch) should understand which changes result in a policy-
compliant, forwarding state version.

H. Example Use Cases

1. API

As mentioned above, the inputs defining LDP sets in the
form of API calls are sent to an input translation controller
supporting the API. The network control system of some
embodiments renders the API updates atomic. That is, a con-
figuration change migrates the system from the old state to the
new state in atomic manner. Specifically, after receiving an
API call, the API receiving code in the system updates the
state for an nLLog engine and after feeding all the updates in,
the API receiving code in the system waits for a fixedpoint (to
let the computation converge) and signals the transaction to
be ended by committing the changes for the nlLog. After this,
the forwarding state updates will be sent downwards to the
controllers below in the cluster hierarchy, or towards the
switching elements—all in a single transactional update. The
update will be applied in a transactional manner by the receiv-
ing element.

In some embodiments, the API update can be transmitted
across a distributed storage system (e.g., the PTDs in the
controllers) as long as the updates arrive as a single transac-
tional update to the receiver. That is, as long as the update is
written to the storage as a single transactional update and the
nl.og processing controller receives the update as a single
transaction, it can write the update to the nlLog computation
process as a single transactional update, as the process for
pushing the state updates continues as described above.

2. Controller Failover

Consider a master controller that manages a set of LDP
sets. In some embodiments, the controller has a hot backup
computing the same state and pushing that state downwards
in a similar manner as the master. One difference between the
master and the hot backup is that the stream from the backup
is ignored until the failover begins. Now as the master dies,
the receiving controller/switching element can switch over to
the backup by gradually migrating from the old state to the
new state as follows.

Instead of the removing/shutting down the stream of state
updates from the old master and letting the computation con-
verge towards a state where there is now an active stream of
updates coming from the controllers above, it merely turns on
the new master, lets the computation converge, and effec-
tively merges the old and new stream. That is, this is building
on the assumption that both sources produce almost identical
streams. After doing this, the controller waits for the compu-
tation to converge, by waiting for the fixedpoint and only after
it has reached the fixedpoint, it removes the old stream com-
pletely. Again, by waiting for the fixedpoint, the controller
lets the computation converge towards the use of the new
source only. After this, the controller can finalize the migra-
tion from the old source to the new source by committing the
transaction. This signals the nl.og runtime to effectively pass
the barrier from the controllers/switching elements below as
a signal that the state updates should be processed.

1. Upgrade Event

Similar to the API and failover operations, the migration
from a controller version to another controller version (i.e.,
software versions) benefits from the transactions and fixed-
point computation support in the system. In this use case, an
external upgrade driver runs the overall upgrade process from
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one controller version to another. It is the responsibility of
that driver to coordinate the upgrade to happen in a way that
packet loss does not occur.

The overall process that the driver executes to compose a
single global transaction of smaller sub-transactions is as
follows:

(1) Once a need for upgrading the forwarding state is
required, the driver asks for the computation of the new state
for the network middle (fabric) to start. This is done for all the
controllers managing the network middle state, and the new
middle state is expected to co-exist with the old one.

(2) The driver then waits for each controller to reach a
fixedpoint and then commits the transaction, synchronously
downwards to the receiving controllers/switching elements.
The driver does the committing in a synchronous manner
because after the commit the driver knows the state is active in
the switching elements and is usable by the packets.

(3) After this, the driver asks for the controllers to update
towards the new edge forwarding state that will also use the
new paths established in (1) for the middle parts of the net-
work.

(4) Again, the driver asks for the fixedpoint from all con-
trollers and then once reaching the fixedpoint, also synchro-
nously commits the updates.

(5) The update is finalized when the driver asks for the
removal of the old network middle state. This does not need to
wait for fixedpoint and commit; the removal will be pushed
down with any other changes the controllers will eventually
push down.

J. On-demand Request Processing

In some cases, the API request processing may be imple-
mented using the nlL.og engine. In that case, the request is fed
into the nlLog engine by translating the request to a set of
tuples that will trigger the nlLog computation of the API
response, again represented as a tuple. When the tuple request
and response have a one-to-one mapping with request and
response tuples, waiting for the response is easy: the API
request processing simply waits for a response that matches
with the request to arrive. Once the response that matches
with the request arrives, the computation for the response is
ready.

However, when the request/response do not have a one-to-
one mapping, it is more difficult to know when the request
processing is complete. In that case, the API request process-
ing may ask for the fixedpoint of the computation after feed-
ing the request in; once the fixedpoint is reached, the request
has all the responses produced. As long as the request and
response tuples have some common identifier, it is easy to
identify the response tuples, regardless of the number of the
response tuples. Thus, this use case does not require the use of
commits as such, but the enabling primitive is the fixedpoint
waiting.

V1. Distribution of Network State Between Switching Ele-
ments

As described above, in the network virtualization solution
of some embodiments a controller instance uses a network
information base (NIB) data structure to send physical con-
trol plane data to the managed switching elements. In other
embodiments, a controller instance does not use the NIB data
structure but instead directly sends the physical control plane
data to the managed switching elements over one or more
communication channels.

In the network virtualization system, the virtualization
application manages the network state to implement LDP sets
over a physical network. The network state is not a constant,
and as the state changes, updates to the state must be distrib-
uted to the managed switching elements throughout the net-
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work. These updates to the network state may appear for at
least three reasons. First, when the logical policy changes
because the network policy enforced by the logical pipeline is
reconfigured (e.g., the updating of access control lists by an
administrator of the LDPS), the network state changes. Sec-
ond, workload operational changes result in a change to the
network state. For instance, when a virtual machine (VM)
migrates from a first hypervisor to a second hypervisor (a first
managed edge switching element to a second managed edge
switching element), the logical view remains unchanged.
However, the network state requires updating due to the
migration, as the logical port to which the VM attaches is now
at a different physical location. Third, physical reconfigura-
tion events, such as device additions, removals, upgrades and
reconfiguration, may result in changes to the network state.

These three different types of changes resulting in network
state updates have different implications in terms of network
state inconsistency (i.e., in terms of the network state not
being up-to-date for a given policy or physical configuration).
For instance, when the network state is not up to date because
of'a new policy, the logical pipeline remains operational and
merely uses the old policy. In other words, while moving to
enforce the new policies quickly is essential, it is typically not
a matter of highest importance because the old policy is valid
as such. Furthermore, the physical reconfiguration events
come without time pressure, as these events can be prepared
for (e.g., by moving VMs around within the physical net-
work).

However, when the network state shared among the switch-
ing elements has not yet captured all of the operational
changes (e.g., VM migrations), the pipeline may not be func-
tional. For example, packets sent to a particular logical des-
tination may be sent to a physical location that no longer
correlates to that logical destination. This results in extra
packet drops that translate to a non-functional logical net-
work, and thus the avoidance of such out-of-date network
states should be given the utmost priority.

Accordingly, the virtualization application faces several
challenges to maintain the network state. First, the virtualiza-
tion itself requires precise control over the network state by
the network controllers in order to enforce the correct policies
and to implement the virtualization. Once the controllers (i.e.,
the control plane) become involved, the timescale for distrib-
uting updates becomes much longer than for solutions that
exist purely within the data plane (e.g., traditional distributed
Layer 2 learning). Second, the responsibility for the entire
network state places a scalability burden on the controllers
(i.e., controller cluster) because the volume of the network
state itself may become a source of complications for the
controller cluster.

Given these challenges, it is preferable to offload the state
update dissemination mechanisms to the managed switching
elements to the largest extent possible, at least for the time
critical state updates. Similarly, even for state updates that do
not require rapid dissemination, moving updates to the man-
aged switching elements provides benefits for scaling of the
logical network.

The differences in the operating environments between the
controllers and the managed switching elements have impli-
cations on the state update dissemination mechanisms used.
For instance, the CPU and memory resources of managed
switching elements tend to be constrained, whereas the serv-
ers on which the controllers run are likely to have high-end
server CPUs. Similarly, the controllers within a controller
cluster tend to run on a number of servers, several orders of
magnitude less than the number of managed switching ele-
ments within a network (e.g., tens or hundreds of controllers
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compared to tens of thousands of switching elements). Thus,
while the controller clusters may favor approaches amenable
to a limited number of controllers, the managed switching
elements should ideally rely on mechanisms scalable to tens
of thousands (or more) of switching elements.

FIG. 57 conceptually illustrates an example architecture of
anetwork control system 5700, in which the managed switch-
ing elements disseminate among themselves at least a portion
of the network state updates. The network control system
5700 includes a network controller cluster 5705 as well as
managed switching elements 5710-5720. The network con-
troller cluster 5705 may be a single network controller or
several (e.g., tens, hundreds) network controllers that operate
together in a distributed fashion. Furthermore, in some
embodiments, the network controller cluster 5700 represents
a set of both logical and physical controllers that operate
together in order to implement a LDPS within several man-
aged switching elements. The operation of logical and physi-
cal controllers is described in part by reference to FIG. 27,
above.

The arrows in FIG. 57 illustrate the transfer of control data
within the network control system 5700. In the above FI1G. 27,
there is no direct communication of control data between the
managed switching elements (network traffic would be
passed directly between the managed switching elements, of
course). However, in the network control system 5700, con-
trol data is sent (i) between the controller cluster 5705 and the
managed switching elements 5710-5720 as well as (ii)
directly between the managed switching elements. In some
embodiments, policy changes to the network state (e.g., ACL.
rules) are propagated down from the network controller clus-
ter 5705 to the managed switching elements 5710-5720,
while operational updates to the network state (e.g., VM
migration information) are propagated directly between the
managed switching elements. In addition, some embodi-
ments also propagate the operational updates upward to the
controller cluster 5705, so that the network controller(s) are
aware of the VM locations as well.

A. Push-Based vs. Pull-Based Solutions

At ahigh level, the network state can be disseminated using
two different approaches. First, the network control systems
of'some embodiments use a push-based approach that pushes
state to the network state recipients. Such a solution proac-
tively replicates the state to entities (e.g., switching elements)
that might need the state, whether or not those entities actu-
ally do need the update. The entire state is replicated because
any missing state information could cause an incorrect policy
(e.g., allowing the forwarding of packets that should be
dropped) or an incorrect forwarding decision, and the entity
pushing the state (e.g., a network controller, a switch) will not
know in advance what specific information the receiving
entity needs.

On the other hand, the network control systems of some
embodiments use a pull-based approach. Rather than auto-
matically sending state information for every state update to
every entity that might need the update, in a pull-based
approach, the entities that actually do need the state update
retrieve that information from other entities. Thus, unlike in
the push-based approach, extra network state updates are not
disseminated. However, because the state is not fetched until
apacket requiring the state information is received by a man-
aged switching element, a certain level of delay is inherent in
the pull-based system. Some embodiments reduce this delay
by caching the pulled state information, which itself intro-
duces consistency issues, as a switching element should not
use cached network state information that is out of date. That
is, if a switching element pulls state information and then
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caches it, the switching element may continue to use the
cached information even after it becomes out of date. As such,
the pull-based approach of some embodiments uses mecha-
nisms to revoke out of date state information from caches
around the network.

The process for pushing state information in a push-based
system builds on existing state synchronization mechanisms
of'some embodiments. The managed switching elements dis-
seminate the state updates as reliable streams of deltas (i.e.,
indicating changes to the state). By applying these deltas to
the already-existing state information, the receiving managed
switching elements can reconstruct the complete network
state. This does not make any assumptions about the structure
of the state information.

Pull-based systems of some embodiments, on the other
hand, require the state to be amenable to partitioning. If every
single update to the network state for a single LDPS required
a managed switching element to retrieve the complete net-
work state for the LDPS, the large amount of wasted
resources would make such dissemination inefficient. How-
ever, in some embodiments, the network state information is
easily divisible into small pieces of information. That is, a
switching element can map each received packet to a well-
defined, small portion of the state that the switching element
can retrieve without also retrieving unnecessary information
about the rest of the network. Thus, for each packet received,
the managed switching element can quickly determine
whether it already has the necessary state information or
whether this information should be retrieved from another
switch.

Thus, even with the need for cache consistency, the pull-
based approaches of some embodiments tend to be simpler
and more lightweight than the push-based approaches. How-
ever, given the restrictions, both in terms of state fetching
delays and state structure, the network control systems of
some embodiments are designed to disseminate only certain
network state updates through the pull-based approaches.

In network control systems that remove the dissemination
of the time-critical state updates from the controller cluster,
relying instead on the managed switching elements, the con-
troller cluster becomes decoupled from the time scales of the
physical events, although the controllers will nevertheless
need to be involved in part with some relatively short time
range physical events (e.g., VM migration). However, these
operations are typically known in advance and can therefore
be prepared for accordingly by the controllers (e.g., by push-
ing the VM-related state information before or during the VM
migration so that it is readily available once the migration
finishes).

B. Network State Information Disseminated Through Pull-
Based Approach

Asindicated above, some embodiments distribute the most
time-critical network state updates directly between managed
switching elements using a pull-based approach. The network
state updates with the most time pressure are the workload
operational changes (e.g., VM migration), whereas logical
policy updates do not have such pressure. Specifically, the
most time-critical network state information relates to map-
ping a first destination-specific identifier to a second destina-
tion-specific identifier with lower granularity. When a VM
moves from one location to another location, the binding
between the logical port to which the VM is assigned and the
physical location of that port changes, and without a quick
update, packets sent to the VM will be forwarded to the wrong
physical location. Similarly, when a MAC address moves
from a first logical port to a second logical port, the binding
between the MAC address and the logical port should be
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quickly updated, lest packets sent to the MAC address be sent
to the wrong logical port (and thus most likely the wrong
location). The same need for timely updates applies to the
binding between a logical IP address and a MAC address, in
case the logical IP address moves from a first virtual interface
to a second virtual interface.

This network state information is easily divisible into par-
titions. The binding of a logical IP address to a MAC address
is defined per IP address, the binding of a MAC address to a
logical port is partitioned over MAC addresses, and finally,
the binding of a logical port to a physical location is parti-
tioned over the logical ports. Because the boundaries between
these different “units” of network state information can be
clearly identified, the binding states are ideal candidates for
pull-based dissemination.

In addition to the time-critical address and port bindings,
the network control system of some embodiments uses the
pull-based approach to update some destination-specific state
updates that do not have the same time sensitivity. For
instance, when the physical encapsulation (e.g., the tunneling
between managed switching elements) uses destination-spe-
cific labels for multiplexing packets destined to different logi-
cal ports onto the same tunnel between the same physical
ports, the labels used are destination-specific and hence can
be disseminated using a pull-based mechanism. For example,
the sending switching element would know a high level port
identifier of the destination port and would use that identifier
to pull the mapping to a more compact label (e.g., a label
assigned by the destination). In addition, the tunnel encapsu-
lation information itself may also be distributed through the
pull-based mechanisms. This tunnel encapsulation informa-
tion might include tunneling details, such as security creden-
tials to use in establishing a direct tunnel between a sender
and a destination. This is an example of state information that
would not need to be pushed to every managed switching
element in a network, as it only affects the two switching
elements at either end of the tunnel.

C. Key-Value Pairs to Disseminate State Information

To implement the pull-based dissemination of network
state information directly between managed switching ele-
ments, the network control system of some embodiments
employs a dissemination service that uses a key-value pair
interface. By implementing such an interface on the data
plane level, the network control system can operate at data
plane time scales, at least with regard to network state infor-
mation distributed through this interface.

In the following description, the key-value pair interface of
some embodiments employs three different operations. How-
ever, one of ordinary skill in the art will recognize that dif-
ferent embodiments may use more, fewer, or different opera-
tions to implement pull-based network state dissemination.

The three operations used by the key-value pair interface of
some embodiments include a register operation, an unregister
operation, and a lookup operation. The register operation of
some embodiments publishes a key-value pair to a dissemi-
nation service (e.g., to specific managed switching elements
designated as registry nodes) for a particular set time, while
the unregister operation of some embodiments retracts a pub-
lished key-value pair before its set time has expired. The
lookup operation of some embodiments is used to pull a value
that corresponds to a known key, and returns either the pub-
lished value for the key or a “not found”. In some embodi-
ments, the key-value interface is the interface to both the
service clients and the clients for the registry nodes. Managed
switching elements issue both lookup operations, in order to
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pull state information from the registry nodes, as well as
register operations to publish their state information to the
registry nodes.

FIG. 58 illustrates examples of the use of these operations
within a managed network 5800. As shown, the managed
network 5800 includes three managed edge switching ele-
ments 5805-5815, and three second-level managed switching
elements 5820-5830. The second-level managed switching
elements 5820 and 5825 are part of a first clique, along with
the three managed edge switching elements 5805-5815,
while the second-level managed switching element 5820 is
part of a second clique. In some embodiments, all of the
managed switching elements within a clique are coupled to
each other via a full mesh tunnel configuration, while the
second-level managed switching elements in the clique
couple to second-level managed switching elements in other
cliques.

The edge managed switching element 5805 publishes its
mappings to the second-level managed switching element
5820 via a register operation, that takes as its parameters a
key, a value, and a time to live (TTL). In some embodiments,
each managed switching element publishes its mappings to
each registry node to which it connects (e.g., each of the
registry nodes within its clique). In other embodiments, a
managed switching element selects a subset of the registry
nodes to which it publishes its information (e.g., using a
deterministic function, such as a hash, that accepts the key
value as input). The selected registry nodes have as few dis-
jointed failure domains as possible in some embodiments, in
order to maximize the availability of the published mappings
The second-level managed switching elements in a network
(e.g., the pool nodes) serve as the registry nodes for the
network in some embodiments.

To issue a register operation in some embodiments, a man-
aged switching element sends a special packet to the one or
more registry nodes. This packet contains header information
that separates the packet from network traffic over the LDP
sets, and identifies the packet as a register operation. The
registry nodes of some embodiments contain a local daemon
for handling network state updates. After identifying a regis-
ter packet as such, the registry node automatically sends the
packet to the local daemon for the creation of a new flow table
entry based on the received information. Alternatively, the
registry nodes of some embodiments use special flow entries
to dynamically create new flow entries based on the informa-
tion in the received register packet, avoiding having to send
the packet to a daemon. The established flow entries of some
embodiments are designed to match any lookup messages
sent with the corresponding key, and to generate the proper
response packets, as will be described below.

In some embodiments, the key in the key-value pair repre-
sents a first piece of network state information over which the
network state is partitioned, and the value represents a second
piece of network state information that is bound to the key.
For instance, examples of key value pairs include (logical IP,
MAC), (MAC, logical port), and (logical port, physical loca-
tion). The TTL for a published key-value pair represents the
length of time before the key-value pair expires. However, in
some embodiments, the managed edge switching elements
are expected to re-register mappings well before the TTL
expires (e.g., after half of the TTL time has elapsed), in order
to ensure that the network state is kept up to date.

As shown, the registry node 5820 stores a table 5835 of
key-value pairs that it has received (e.g., from the register
messages sent by the managed edge switching elements).
These pairs store, for example, logical IP to MAC address
bindings, MAC to logical port bindings, and logical port to
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physical location bindings. In addition, each row in the table
stores the TTL for the binding pair. In some embodiments,
this table is implemented as the dynamically created flow
entries stored by the registry node. If the TTL for an entry is
reached, some embodiments automatically remove the entry
from the table 5835 (i.e., remove the flow entry for the pair) if
the pair has not been republished.

In FIG. 58, the managed edge switching element 5810
issues an unregister operation by sending a packet to the
registry node 5820. The unregister operation of some
embodiments only includes a single parameter, the key that is
being unregistered. The switching element 5810 would have
previously sent a register packet to the registry node indicat-
ing a mapping of the key to a particular value. Upon receiving
the unregister packet, the registry node 5820 removes the
entry for the key (and its mapped value) from its table 5835.

FIG. 58 also illustrates the managed edge switching ele-
ment 5815 issuing a lookup operation by sending a packet to
the second-level managed switching element 5820, which
takes as its parameter a key for which the issuing switching
element needs to know the corresponding value. For example,
as described below, the managed switching element 5815
might have a packet to be sent to a particular MAC address,
and needs to know the logical port to which the particular
MAC address is bound. When a managed switching element
receives a packet to process (i.e., a logical network traffic
packet), the switching element determines whether it can
process the packet with its current network state information.
When it lacks information, the switching element (in some
embodiments, a daemon operating at the switch) sends a
lookup packet to one or more registry nodes in order to pull
the desired network state information. As shown, the switch-
ing element 5815 also sends a lookup packet to the second-
level switching element 5825.

The flow entries established at the registry node 5820 in
table 5835 are created to match any lookup messages issued
to pull a corresponding key, and to generate the proper
response. To create such a response, the registry node looks
for a match within its flow entries. When the registry node
matches one of its created flow entries, it creates a response
packet by changing the type of the received lookup packet to
a response packet and embedding both the key and its bound
value, and then sends the response packet back to the request-
ing managed switching element.

When the registry node does not find a match within its
tables, the registry node sends the message to any remote
cliques within the network. In the situation illustrated in FIG.
58, the registry node 5820 does not have a match for the key
looked up by the edge switching element 5815. As such, the
registry node 5820 sends the lookup packet to the second-
level managed switching element 5830, part of a remote
clique. The network state table at switching element 5830
includes an entry for the key-value pair, and sends back a
response packet that includes the key and value. When the
remote clique does not have a match, the switching element
5815 replies with an empty response (i.e., a “not found”
response). The second-level switching element 5830 both
forwards this response packet to the managed switching ele-
ment 5815 and caches the key-value pair (e.g., creates a new
entry in the table 5835) in some embodiments. In some
embodiments, the lookup and subsequent response have sym-
metric travel routes. Because the delivery of these packets is
unreliable in both directions, the original issuer of the lookup
packet (e.g., switching element 5815) should be prepared to
re-issue the query as necessary after a proper timeout. By
avoiding any contact with the network controllers, the pro-
cessing of the lookup (state-pulling) packets at the registry
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nodes remains completely at the data plane and thus remains
efficient, providing low latency response times.

Much like the register packets, the lookup packets of some
embodiments (and the responses) contain header information
that separates the packet from network traffic over the LDP
sets, and identifies the packet as a lookup operation. In addi-
tion to this type-identification information, the packets
include an issuer identifier so that the response can be sent
back to the issuer without having to hold any state about the
pending lookup operation in the registry nodes. In addition, of
course, the packet contains the key for which the originating
switching element wishes to pull the corresponding value.

The lookup response packet of some embodiments con-
tains the requested key-value pair along with the TTL value
for the pair. In addition, the packet contains an issuer identi-
fier so that if the response is relayed via an intermediate
registry node, then the packet identifies the destination for the
response. In addition, the lookup packet contains a second
identifier that identifies the publishing switch, which is useful
in revocation processing, discussed below.

D. Edge Switching Flement Processing

FIG. 59 conceptually illustrates the architecture of an edge
switching element 5900 in a pull-based dissemination net-
work of some embodiments. As shown, the edge switching
element 5900 is a software switching element that operates
within a host machine 5905. Other embodiments implement
the managed edge switching elements in hardware switching
elements. At least one virtual machine 5910 also operates on
the host 5905.

Incoming packets arrive at the managed switching element
5900, either from the VM 5910 (as well as other VMs running
on the host 5905) or from other managed switching elements.
The managed switching element 5900 contains a set of flow
entries 5915 that it uses to forward incoming packets. How-
ever, in a pull-based system, the flow entries 5915 may not
include the information necessary for the managed switching
5900 to make a forwarding decision for the packet. In this
case, the switching element 5900 requests information from a
mapping daemon 5920 that also operates on the host 5905.

As shown, the mapping daemon includes a registration
manager 5925 and a lookup manager 5930. The registration
manager of some embodiments monitors the local switching
element state 5935, which includes a configuration database
as well as the flow entries 5915. When a change is detected in
the local switching element state, the registration manager
5925 causes the switching element 5900 to issue a register
packet to one or more registry nodes registering the state
information for the switch. This state information may
include, e.g., the MAC address and logical port of a new VM
operating on the host 5905, etc.

The lookup manager 5930 receives from the switching
element 5900 any logical network traffic packets that require
lookups in order to be processed by the switching element.
That is, the flow entries offload to the mapping daemon 5920
any packets that the flow entries cannot process and that
require lookups. In some embodiments, a single logical
packet may trigger multiple lookups to the daemon 5920
before passing through the entire processing pipeline to be
ready for the encapsulation and delivery to the physical next-
hop (e.g., a first lookup to identify the logical port for a
packet’s destination MAC address and then a second lookup
to determine the physical location corresponding to the
returned logical port).

In some embodiments, the daemon 5920 uses (e.g., con-
tains) a queue 5940 to store packets while waiting for the
lookup responses needed to forward the packets from the
registry nodes. If the daemon becomes overloaded, some
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embodiments allow the daemon to drop packets by either not
issuing any lookups or issuing the lookups and only dropping
the corresponding packet. Once the packet has been queued,
the daemon issues a lookup packet (through the managed
switching element 5900) and sends it back to the data plane
for further processing. The daemon sends a copy of the
lookup packet to several local registry nodes in some embodi-
ments. Depending on the reliability goals of the system, the
daemon may issue multiple calls in parallel or wait for a first
call to fail in order to retry sending to a new registry node.

Once a response packet is received back at the switching
element 5900, the response is cached in the daemon. As
shown, in some embodiments, the lookup manager 5930
manages a cache of key-value pairs that also stores TTL
information for each pair. In addition, the switching element
of'some embodiments (or the daemon, in other embodiments)
adds a flow entry (along with a TTL) that corresponds to the
key-value pair to the flow table 5915. Thus, any packets sent
to the particular destination that are required for the pulled
state information, can be processed completely on the data
plane. The daemon 5920 later inspects the flow entry to deter-
mine whether it is actively used in some embodiments. When
this is the case, the daemon issues a new lookup packet before
the TTL expires, in order to keep the key-value pair up to date.

E. Cache Consistency

Certain situations can result in potential problems in the
pull-based system, if an aspect of the network state has
changed while switching elements are still using an older
cached version of the state. For instance, in some embodi-
ments if a switching element issues a lookup message and
then receives a valid response, the switching element caches
the result (e.g., by creating a flow entry) for the TTL time in
order to avoid issuing a new lookup message for every packet
that uses the state information. However, if the publisher of
the state information changes the key-value pair, the now-
invalid entry will remain cached until the TTL expires, at
which point the switching element would issue a new lookup
message in some embodiments. To address this potential
situation, some embodiments attempt to shorten the time of
inconsistency to the absolute minimum while maintaining the
pull-based model.

When a switching element has an entry in its cache that
stores invalid state information and receives a packet that
needs the state information, the switching element will for-
ward the packet using that incorrect state information. In
some embodiments, the physical switching element that
receives the incorrectly-forwarded packet detects the use of
the incorrect state. The packet may have been sent to a desti-
nation that is no longer attached to the receiving switch, or the
bindings used in the packet are known to be wrong. To detect
this, the receiving switching element of some embodiments
matches over the bindings based on its local state information
and therefore validates the bindings. If the switching element
is unable to find a match, it determines that the state informa-
tion used to forward the packet is invalid.

Upon detecting that the invalid state has been used, the
receiving switching element of some embodiments sends a
special revocation packet that includes the key of the key-
value pair used to create the invalid binding. The revocation
packet also includes the packet’s publisher identifier. In some
embodiments, the switching element sends the revocation
packet either directly to the sender or via the pool nodes. In
order to send such a packet, the destination switching element
has to determine the sender. When there is a direct tunnel
between the source and the destination this can be determined
easily. However, when the source (that used the incorrect
bindings) and the destination are located at different cliques,
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the packet encapsulation needs to store enough information
for the receiving switching element to identify the source.
Accordingly, some embodiments require the source managed
switching element to include an identifier in the encapsula-
tion.

In some embodiments, once the original packet sending
switching element receives the revocation, the switching ele-
ment not only revokes the key-value pair from its cache (as-
suming the current cache entry was originally published by
the sender of the revocation packet), but additionally sends
this revocation packet to the registry nodes to which it sends
its queries for the particular key (and from which it may have
received the now invalid state information). These registry
nodes, in some embodiments, forward the revocation to reg-
istry nodes at other cliques and then remove the cached
entries matching the key and publisher from their caches (i.e.,
from their flow entry tables). Using this technique, any
switching element that holds invalid cached state information
in its flow entries will converge towards the removal of the
invalid information, with only a transient packet loss (e.g.,
only the first packet sent using the invalid state information).

F. Negative Caching

As indicated above, in some cases when a switching ele-
ment issues a lookup packet in order to pull state information,
the registry nodes will not yet have the requested state infor-
mation and therefore reply with a packet indicating the
requested information is not found. In this case, the expecta-
tion is that the state information will be available at the reg-
istry soon (either directly from the publishing switch, or from
registry nodes in other cliques), as otherwise packets that
require such a lookup operation should not be sent (unless
someone is trying to maliciously forge packets).

In order to limit the extra load under such transient condi-
tions caused by the publisher of the state information being
slower than the switching element pulling the state informa-
tion, and to limit the effect of malicious packet forging, when
the switching element receives a “not found” response, some
embodiments cache that result as the switching element
would with a positive response. However, the switching ele-
ment sets the TTL to a significantly lower time value than
would be the case for a positive response. As the result is
assumed to be only due to the transient conditions, the lookup
should be retried as soon as the system expects that the value
should be available. Unlike the expired/invalid lookup results
described in the previous section, these cached “not found”
results are not removed quickly and automatically without the
short TTL value. As they do not result in packets being sent to
an incorrect destination (or any destination at all), there is no
revocation packet send back to cause a correction to an incon-
sistency.

G. Security Issues

In a push-based network control system, in which the con-
troller cluster pushes all of the network state information to
the managed switching elements, the security model for the
network state at the switching elements is clear. So long as the
channel to the switching elements from the controllers
remains secure and the switching elements themselves are not
breached, then the state information at the switching elements
remains correct.

However, in the pull-based system described herein, in
which the switching elements obtain at least some of the
network state information from the registry nodes (other
switching elements), the security model changes. Not only
must the registry nodes be trusted, but additionally, the com-
munication channels for transmitting the control-related mes-
sages (e.g., register/unregister, lookup/response, revoke, etc.)
must be secured, to prevent malicious entities from tampering
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with the messages at the physical network level. These com-
munication channels include the channels between the regis-
try nodes and other switching elements, as well as between
the switching elements themselves.

Some embodiments rely on a more content-oriented
approach to securing these channels for exchanging control
messages (as opposed to ordinary network data plane traffic).
For instance, in some embodiments, the publisher of a key-
value pair cryptographically signs its register messages (as
well as unregister and revocation messages), under the
assumption that a receiver of the messages can verify the
signature and thus the validity of the data contained therein.
For these cryptographic signatures and for distribution of the
necessary public keys, some embodiments rely on standard
public-key infrastructure (PKI) techniques.

VII. Logical Forwarding Environment

Several embodiments described above and below provide
network control systems that completely separate the logical
forwarding space (i.e., the logical control and forwarding
planes) from the physical forwarding space (i.e., the physical
control and forwarding planes). These control systems
achieve such a separation by using a mapping engine to map
the logical forwarding space data to the physical forwarding
space data. By completely decoupling the logical space from
the physical space, the control systems of these embodiments
allow the logical view of the logical forwarding elements to
remain unchanged while changes are made to the physical
forwarding space (e.g., virtual machines are migrated, physi-
cal switches or routers are added, etc.).

More specifically, the control system of some embodi-
ments manages networks over which machines (e.g. virtual
machines) belonging to several different users (i.e., several
different tenants in a private or public hosted environment
with multiple hosted computers and managed forwarding
elements that are shared by multiple different related or unre-
lated tenants) may exchange data packets for separate LDP
sets. That is, machines belonging to a particular user may
exchange data with other machines belonging to the same
user over a LDPS for that user, while machines belonging to
a different user exchange data with each other over a different
LDPS implemented on the same physical managed network.
In some embodiments, a LDPS (also referred to as a logical
forwarding element (e.g., logical switch, logical router), or
logical network in some cases) is a logical construct that
provides switching fabric to interconnect several logical
ports, to which a particular user’s machines (physical or vir-
tual) may attach.

In some embodiments, the creation and use of such LDP
sets and logical ports provides a logical service model that to
anuntrained eye may seem similar to the use of a virtual local
area network (VLAN). However, various significant distinc-
tions from the VL AN service model for segmenting a network
exist. In the logical service model described herein, the physi-
cal network can change without having any effect on the
user’s logical view of the network (e.g., the addition of a
managed switching element, or the movement of a VM from
one location to another does not affect the user’s view of the
logical forwarding element). One of ordinary skill in the art
will recognize that all of the distinctions described below may
not apply to a particular managed network. Some managed
networks may include all of the features described in this
section, while other managed networks will include different
subsets of these features.

In order for the managed forwarding elements within the
managed network of some embodiments to identify the LDPS
to which a packet belongs, the network controller clusters
automatedly generate flow entries for the physical managed
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forwarding elements according to user input defining the
LDP sets. When packets from a machine on a particular LDPS
are sent onto the managed network, the managed forwarding
elements use these flow entries to identify the logical context
of the packet (i.e., the LDPS to which the packet belongs as
well as the logical port towards which the packet is headed)
and forward the packet according to the logical context.

In some embodiments, a packet leaves its source machine
(and the network interface of its source machine) without any
sort of logical context ID. Instead, the packet only contains
the addresses of the source and destination machine (e.g.,
MAC addresses, IP addresses, etc.). All of the logical context
information is both added and removed at the managed for-
warding elements of the network. When a first managed for-
warding element receives a packet directly from a source
machine, the forwarding element uses information in the
packet, as well as the physical port at which it received the
packet, to identify the logical context of the packet and
append this information to the packet. Similarly, the last
managed forwarding element before the destination machine
removes the logical context before forwarding the packet to
its destination. In addition, the logical context appended to the
packet may be modified by intermediate managed forwarding
elements along the way in some embodiments. As such, the
end machines (and the network interfaces of the end
machines) need not be aware of the logical network over
which the packet is sent. As a result, the end machines and
their network interfaces do not need to be configured to adapt
to the logical network. Instead, the network controllers con-
figure only the managed forwarding elements. In addition,
because the majority of the forwarding processing is per-
formed at the edge forwarding elements, the overall forward-
ing resources for the network will scale automatically as more
machines are added (because each physical edge forwarding
element can only have so many machines attached).

In the logical context appended (e.g., prepended) to the
packet, some embodiments only include the logical egress
port. That is, the logical context that encapsulates the packet
does not include an explicit user ID. Instead, the logical
context captures a logical forwarding decision made at the
first hop (i.e., a decision as to the destination logical port).
From this, the user ID (i.e., the LDPS to which the packet
belongs) can be determined implicitly at later forwarding
elements by examining the logical egress port (as that logical
egress port is part of a particular LDPS). This results in a flat
context identifier, meaning that the managed forwarding ele-
ment does not have to slice the context ID to determine
multiple pieces of information within the ID.

In some embodiments, the egress port is a 32-bit ID. How-
ever, the use of software forwarding elements for the man-
aged forwarding elements that process the logical contexts in
some embodiments enables the system to be modified at any
time to change the size of the logical context (e.g., to 64 bits
or more), whereas hardware forwarding elements tend to be
more constrained to using a particular number of bits for a
context identifier. In addition, using a logical context identi-
fier such as described herein results in an explicit separation
between logical data (i.e., the egress context ID) and source/
destination address data (i.e., MAC addresses). While the
source and destination addresses are mapped to the logical
ingress and egress ports, the information is stored separately
within the packet. Thus, at managed switching elements
within a network, packets can be forwarded based entirely on
the logical data (i.e., the logical egress information) that
encapsulates the packet, without any additional lookup over
physical address information.
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In some embodiments, the packet processing within a man-
aged forwarding element involves repeatedly sending packets
to a dispatch port, effectively resubmitting the packet back
into the switch. In some embodiments, using software
switches provides the ability to perform such resubmissions
of'packets. Whereas hardware forwarding elements generally
involve a fixed pipeline (due, in part, to the use of an ASIC to
perform the processing), software forwarding elements of
some embodiments can extend a packet processing pipeline
as long as necessary, as there is not much of a delay from
performing the resubmissions.

In addition, some embodiments enable optimization of the
multiple lookups for subsequent packets within a single set of
related packets (e.g., a single TCP/UDP flow). When the first
packet arrives, the managed forwarding element performs all
of the lookups and resubmits in order to fully process the
packet. The forwarding element then caches the end result of
the decision (e.g., the addition of an egress context to the
packet, and the next-hop forwarding decision out a particular
port of the forwarding element over a particular tunnel) along
with a unique identifier for the packet that will be shared with
all other related packets (i.e., a unique identifier for the TCP/
UDP flow). Some embodiments push this cached result into
the kernel of the forwarding element for additional optimiza-
tion. For additional packets that share the unique identifier
(i.e., additional packets within the same flow), the forwarding
element can use the single cached lookup that specifies all of
the actions to perform on the packet. Once the flow of packets
is complete (e.g., after a particular amount of time with no
packets matching the identifier), in some embodiments the
forwarding element flushes the cache. This use of multiple
lookups, in some embodiments, involves mapping packets
from a physical space (e.g., MAC addresses at physical ports)
into a logical space (e.g., a logical forwarding decision to a
logical port of a logical switch) and then back into a physical
space (e.g., mapping the logical egress context to a physical
outport of the switch).

Such logical networks, that use encapsulation to provide an
explicit separation of physical and logical addresses, provide
significant advantages over other approaches to network vir-
tualization, such as VL ANs. For example, tagging techniques
(e.g., VLAN) use a tag placed on the packet to segment
forwarding tables to only apply rules associated with the tag
to a packet. This only segments an existing address space,
rather than introducing a new space. As a result, because the
addresses are used for entities in both the virtual and physical
realms, they have to be exposed to the physical forwarding
tables. As such, the property of aggregation that comes from
hierarchical address mapping cannot be exploited. In addi-
tion, because no new address space is introduced with tag-
ging, all of the virtual contexts must use identical addressing
models and the virtual address space is limited to being the
same as the physical address space. A further shortcoming of
tagging techniques is the inability to take advantage of mobil-
ity through address remapping.

VIII. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more process-
ing unit(s) (e.g., one or more processors, cores of processors,
or other processing units), they cause the processing unit(s) to
perform the actions indicated in the instructions. Examples of
computer readable media include, but are not limited to,
CD-ROMs, flash drives, RAM chips, hard drives, EPROMs,
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etc. The computer readable media does not include carrier
waves and electronic signals passing wirelessly or over wired
connections.

In this specification, the term “software” is meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some embodi-
ments, multiple software inventions can be implemented as
sub-parts of a larger program while remaining distinct soft-
ware inventions. In some embodiments, multiple software
inventions can also be implemented as separate programs.
Finally, any combination of separate programs that together
implement a software invention described here is within the
scope of the invention. In some embodiments, the software
programs, when installed to operate on one or more electronic
systems, define one or more specific machine implementa-
tions that execute and perform the operations of the software
programs.

FIG. 60 conceptually illustrates an electronic system 6000
with which some embodiments of the invention are imple-
mented. The electronic system 6000 can be used to execute
any of the control, virtualization, or operating system appli-
cations described above. The electronic system 6000 may be
a computer (e.g., a desktop computer, personal computer,
tablet computer, server computer, mainframe, a blade com-
puter etc.), phone, PDA, or any other sort of electronic device.
Such an electronic system includes various types of computer
readable media and interfaces for various other types of com-
puter readable media. Electronic system 6000 includes a bus
6005, processing unit(s) 6010, a system memory 6025, a
read-only memory 6030, a permanent storage device 6035,
input devices 6040, and output devices 6045.

Thebus 6005 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 6000. For
instance, the bus 6005 communicatively connects the pro-
cessing unit(s) 6010 with the read-only memory 6030, the
system memory 6025, and the permanent storage device
6035.

From these various memory units, the processing unit(s)
6010 retrieve instructions to execute and data to process in
order to execute the processes of the invention. The process-
ing unit(s) may be a single processor or a multi-core processor
in different embodiments.

The read-only-memory (ROM) 6030 stores static data and
instructions that are needed by the processing unit(s) 6010
and other modules of the electronic system. The permanent
storage device 6035, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 6000 is off. Some embodiments of the invention use a
mass-storage device (such as a magnetic or optical disk and
its corresponding disk drive) as the permanent storage device
6035.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 6035, the system
memory 6025 is a read-and-write memory device. However,
unlike storage device 6035, the system memory is a volatile
read-and-write memory, such a random access memory. The
system memory stores some of the instructions and data that
the processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 6025,
the permanent storage device 6035, and/or the read-only
memory 6030. From these various memory units, the process-
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ing unit(s) 6010 retrieve instructions to execute and data to
process in order to execute the processes of some embodi-
ments.

The bus 6005 also connects to the input and output devices
6040 and 6045. The input devices enable the user to commu-
nicate information and select commands to the electronic
system. The input devices 6040 include alphanumeric key-
boards and pointing devices (also called “cursor control
devices”). The output devices 6045 display images generated
by the electronic system. The output devices include printers
and display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD). Some embodiments include devices
such as a touchscreen that function as both input and output
devices.

Finally, as shown in FIG. 60, bus 6005 also couples elec-
tronic system 6000 to a network 6065 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or a
network of networks, such as the Internet. Any or all compo-
nents of electronic system 6000 may be used in conjunction
with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-read-
able storage media, machine-readable media, or machine-
readable storage media). Some examples of such computer-
readable media include RAM, ROM, read-only compact
discs (CD-ROM), recordable compact discs (CD-R), rewrit-
able compact discs (CD-RW), read-only digital versatile
discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of
recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW,
DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD
cards, micro-SD cards, etc.), magnetic and/or solid state hard
drives, read-only and recordable Blu-Ray® discs, ultra den-
sity optical discs, any other optical or magnetic media, and
floppy disks. The computer-readable media may store a com-
puter program that is executable by at least one processing
unit and includes sets of instructions for performing various
operations. Examples of computer programs or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated cir-
cuits, such as application specific integrated circuits (ASICs)
or field programmable gate arrays (FPGAs). In some embodi-
ments, such integrated circuits execute instructions that are
stored on the circuit itself.

As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic or
other technological devices. These terms exclude people or
groups of people. For the purposes of the specification, the
terms display or displaying means displaying on an electronic
device. As used in this specification, the terms “computer
readable medium,” “computer readable media,” and
“machine readable medium” are entirely restricted to tan-
gible, physical objects that store information in a form that is
readable by a computer. These terms exclude any wireless
signals, wired download signals, and any other ephemeral
signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other specific
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forms without departing from the spirit of the invention. In
addition, a number of the figures (including FIGS. 13, 15, 20,
33, 34, 50, and 52) conceptually illustrate processes. The
specific operations of these processes may not be performed
in the exact order shown and described. The specific opera-
tions may not be performed in one continuous series of opera-
tions, and different specific operations may be performed in
different embodiments. Furthermore, the process could be
implemented using several sub-processes, or as part of a
larger macro process.

Also, several embodiments were described above in which
a user provides LDP sets in terms of logical control plane
data. In other embodiments, however, a user may provide
LDP sets in terms of logical forwarding plane data. In addi-
tion, several embodiments were described above in which a
controller instance provides physical control plane data to a
switching element in order to manage the switching element.
In other embodiments, however, the controller instance may
provide the switching element with physical forwarding
plane data. In such embodiments, the relational database data
structure would store physical forwarding plane data and the
virtualization application would generate such data.

Furthermore, in several examples above, a user specifies
one or more logical switches. In some embodiments, the user
can provide physical switching element configurations along
with such logic switching element configurations. Also, even
though controller instances are described that in some
embodiments are individually formed by several application
layers that execute on one computing device, one of ordinary
skill will realize that such instances are formed by dedicated
computing devices or other machines in some embodiments
that perform one or more layers of their operations.

Also, several examples described above show that a LDPS
is associated with one user. One of the ordinary skill in the art
will recognize that then a user may be associated with one or
more sets of LDP sets in some embodiments. That is, the
relationship between a LDPS and a user is not always a
one-to-one relationship as a user may be associated with
multiple LDP sets. Thus, one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details.

What is claimed is:
1. A non-transitory machine readable medium of a control-
ler computer storing a program which when executed by at
least one processing unit of the controller computer manages
aplurality of managed forwarding elements that forward data
through a network, the program comprising sets of instruc-
tions for:
receiving inputs that define forwarding performance con-
straints of a set of managed forwarding elements;

based on the inputs, generating a set of universal flow
entries for configuring the set of managed forwarding
elements to apply the forwarding performance con-
straints to data traffic forwarded by the managed for-
warding elements; and

from the controller computer, sending the generated set of

universal flow entries to a controller that manages a
managed forwarding element wherein the controller (1)
directs the managed forwarding element to create a set of
network constructs for applying the forwarding perfor-
mance constraints based on the set of universal flow
entries and (2) converts the set of universal flow entries
into a set of customized flow entries for the managed
forwarding element based on information about the cre-
ated set of network constructs received from the man-
aged forwarding element.
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2. The machine readable medium of claim 1, wherein the
controller is a first controller and the managed forwarding
element is a first managed forwarding element, wherein the
first controller and the first managed forwarding element
operate on a first device while a second controller and a
second managed forwarding element managed by the second
controller operate on a second different device.

3. The machine readable medium of claim 1, wherein the
set of customized flow entries comprises an identifier for a
network construct that the managed forwarding element cre-
ates and uses to apply the forwarding performance constraints
to the data that the managed forwarding element forwards.

4. The machine readable medium of claim 2, wherein the
first and second devices are different host machines of a
hosting system.

5. The machine readable medium of claim 1, wherein the
set of network constructs comprises a queue in which to
accumulate data that the managed forwarding element
receives.

6. The machine readable medium of claim 5, wherein the
set of instructions for generating the set of universal flow
entries comprises sets of instructions for:

converting the inputs to logical control plane data;

converting the logical control plane data into logical for-

warding plane data; and converting the logical forward-
ing plane data into the universal flow entries, wherein the
queue is a physical queue, wherein the logical control
plane data specifies a logical queue to be mapped to the
physical queue, wherein the controller maps the logical
queue to the physical queue.

7. The machine readable medium of claim 1, wherein the
managed forwarding forward element forwards data based on
the customized flow entries for the managed forwarding ele-
ment.

8. The machine readable medium of claim 1, wherein the
forwarding performance constraints set an amount of data
that a managed forwarding element can forward during a
period of time.

9. A non-transitory machine readable medium storing a
controller application which when executed by at least one
processing unit of a host machine configures a first managed
forwarding element that operates on the host machine to
establish a tunnel between the first managed forwarding ele-
ment and a second managed forwarding element, the program
comprising sets of instructions for:

receiving a set of universal flow entries from a controller

computer for configuring the first managed forwarding
element to apply forwarding performance constraints to
data that the first managed forwarding element forwards,
the universal flow entries generated by the controller
computer based on a set of inputs;

based on the set of universal flow entries, directing the first

managed forwarding element to create a network con-
struct on the first managed forwarding element, the net-
work construct for applying the forwarding performance
constraints;

from the first managed forwarding element, receiving

information about the network construct created by the
first managed forwarding element; and

based on the received information, converting the set of

universal flow entries to a set of customized flow entries
for the first managed forwarding element.

10. The machine readable medium of claim 9, wherein the
controller application is within the first managed forwarding
element.

11. The machine readable medium of claim 9, wherein the
controller application further comprises a set of instructions
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for sending the customized flow entries to the first managed
forwarding element, wherein the first managed forwarding
element forwards data based on the customized flow entries.
12. The machine readable medium of claim 9, wherein the
network construct comprises a queue in which the first man-
aged forwarding element accumulates data in order to apply
the forwarding performance constraints.
13. A method for a controller computer that manages man-
aged forwarding elements in a network, the method compris-
ing:
receiving inputs that define forwarding performance con-
straints of a set of managed forwarding elements;

based on the inputs, generating, by a processor of the
controller computer, a set of universal flow entries for
configuring the set of managed forwarding elements to
apply the forwarding performance constraints to data
traffic forwarded by the managed forwarding elements;
and

sending the generated set of universal flow entries to a

controller that manages a managed forwarding element,
wherein the controller (1) directs the managed forward-
ing element to create a set of network constructs for
applying the forwarding performance constraints based
on the set of universal flow entries and (2) converts the
set of universal flow entries into a set of customized flow
entries for the managed forwarding element based on
information about the created set of network constructs
received from the managed forwarding element.

14. The method of claim 13, wherein the controller is a first
controller and the managed forwarding element is a first
managed forwarding element, wherein the first controller and
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the first managed forwarding element operate on a first device
while a second controller and a second managed forwarding
element managed by the second controller operate on a sec-
ond different device.

15. The method of claim 13, wherein the set of customized
flow entries comprises an identifier for a network construct
that the managed forwarding element creates and uses to
apply the forwarding performance constraints to the data that
the managed forwarding element forwards.

16. The method of claim 15, wherein the first and second
devices are different host machines of a hosting system.

17. The method of claim 13, wherein the set of network
constructs comprises a queue in which to accumulate data
that the managed forwarding element receives.

18. The method of claim 17, wherein generating the set of
universal flow entries comprises:

converting the inputs to logical control plane data;

converting the logical control plane data into logical for-

warding plane data; and converting the logical forward-
ing plane data into the universal flow entries,

wherein the queue is a physical queue, wherein the logical

control plane data specifies a logical queue to be mapped
to the physical queue, wherein the controller maps the
logical queue to the physical queue.

19. The method of claim 13, wherein the managed forward-
ing element forwards data based on the customized flow
entries for the managed forwarding element.

20. The method of claim 13, wherein the forwarding per-
formance constraints set an amount of data that a managed
forwarding element can forward during a period of time.
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